

Metamorphic Testing Among Open-Source Software Developers: A Quantitative

Correlational Study

Dissertation Manuscript

Submitted to Northcentral University

School of Technology

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

by

BRITTANY RAFAELA HOARD

La Jolla, California

December 2020

Approval Page

By

Approved by the Doctoral Committee:

 Dissertation Chair: INSERT NAME Degree Held Date

Committee Member: INSERT NAME Degree Held Date

Committee Member: INSERT NAME Degree Held Date

DCS 03/23/2021 | 19:56:57 MST

Christopher Weppler

Efosa Osayamwen

PhD 03/23/2021 | 15:12:52 MST

Milton Kabia

03/24/2021 | 07:55:27 MSTPhD, DHA

BRITTANY RAFAELA HOARD

Metamorphic Testing Among Open-Source Software Developers: A Quantitative Correlational Study

ii

Abstract

The study addresses the problem of the inadequacy of conventional software testing methods to

detect all software defects. This problem affects software users and researchers due to poor

software performance, reduced precision or accuracy of software output, and retractions of

research publications. Detecting software defects may also be challenging due to the oracle

problem. Existing research supports the metamorphic testing method's effectiveness for

handling the oracle problem and finding software defects that conventional testing methods

cannot detect. The research questions ask about the relationships among the use and acceptance

of the metamorphic testing method among open-source developers and the constructs of

performance expectancy and effort expectancy. The study's purpose was to examine these

relationships. Another objective of the study was to understand how the variables of age, gender,

and experience moderate these relationships. The guiding theoretical framework of the study

was the unified theory of acceptance and use of technology. In this study, a quantitative

methodology with a correlational design was employed. The participants were contributors to

open-source software projects contained in the GitHub “Software in science” collection. The

data was collected via an online survey instrument. The data were analyzed using Spearman’s

rank-order correlation tests and moderated multiple regression analysis. Moderate to strong

positive relationships were found between both the performance expectancy and effort

expectancy and the acceptance and use of metamorphic testing. This finding suggests that

increasing the extent to which developers believe that metamorphic testing will improve their job

performance and improving its ease of use will increase the adoption of metamorphic testing.

The creation of interventions to educate developers on the use of metamorphic testing is

recommended. The study results support the applicability of the unified theory of acceptance

iii

and use of technology to software testing methods. Future research could involve studying the

relationship between metamorphic testing adoption and other factors, such as social influence

and facilitating conditions.

iv

Acknowledgements

First and foremost, I would like to thank my Dissertation Chair, Dr. Milton Kabia, for

expertly guiding me through the dissertation process. You went above and beyond to review my

work, answer my e-mails, and schedule meetings promptly. It was a great pleasure to work with

you. Also, I would like to thank my other dissertation committee members, Dr. Christopher

Weppler and Dr. Efosa Osayamwen, for taking the time to review my work and provide helpful

comments. Next, I would like to thank my Faculty Mentors, namely Dr. Brian Holbert, Dr.

Bhanu Kapoor, Dr. Frank Appunn, Dr. John Enamait, and Dr. Danielle Babb. Your expertise

and feedback were invaluable throughout my doctoral journey. Thank you to Dr. J. Robert Sapp

for the useful discussion we had regarding my dissertation topic at the Dissertation Boot Camp I

attended.

Finally, I would like to acknowledge all the faculty and staff who have provided vital

services to NCU students, including but not limited to the Library, the Center for Teaching and

Learning, IT Support Services, the Institutional Review Board, and the Dissertation Boot Camps.

I would like to extend a special thank-you to my Academic and Finance Advisor, Mr. Michael

Edwards, for easing the process of course registration and handling financial matters.

Completing this degree program would not have been possible without all of you.

v

Table of Contents

Chapter 1: Introduction ... 1

Statement of the Problem .. 3
Purpose of the Study ... 4
Introduction to Theoretical Framework .. 5
Introduction to Research Methodology and Design ... 7
Research Questions ... 8
Hypotheses .. 9
Significance of the Study .. 9
Definitions of Key Terms ... 10
Summary ... 12

Chapter 2: Literature Review .. 13

Introduction ... 13
Methods of Searching ... 13
Theoretical Perspective of the Study .. 16
Unified Theory of Acceptance and Use of Technology ... 16
Technology Acceptance Model .. 21
Hedonic-Motivation System Adoption Model .. 25

Review of the Literature ... 28
Scientific Software Quality Assurance ... 28
Open-Source Software Development ... 35
Open-Source Software Quality Assurance ... 37
General Software Testing Challenges ... 39
Metamorphic Testing Methodologies ... 41
Metamorphic Testing Frameworks ... 42
Acceptance of Metamorphic Testing .. 43
Metamorphic Testing Effectiveness.. 44
Metamorphic Testing Challenges ... 46

Synthesis of the Research Findings .. 47
Critique of the Previous Research Methods.. 50
Summary ... 52

Chapter 3: Research Method ... 54

Research Methodology and Design .. 55
Population and Sample ... 57
Instrumentation ... 59
Operational Definitions of Variables .. 60

vi

Study Procedures .. 64
Data Analysis .. 66
Assumptions .. 68
Limitations .. 68
Delimitations ... 69
Ethical Assurances .. 70
Summary ... 72

Chapter 4: Findings ... 73

Validity and Reliability of the Data .. 73
Results ... 77
Research Question 1/Hypothesis .. 84
Research Question 2/Hypothesis .. 87
Evaluation of the Findings .. 90
Summary ... 91

Chapter 5: Implications, Recommendations, and Conclusions .. 93

Implications... 95
Research Question 1/Hypothesis .. 95
Research Question 2/Hypothesis .. 97
Theoretical Framework ... 98

Recommendations for Practice ... 99
Research Question 1/Hypothesis .. 100
Research Question 2/Hypothesis .. 101

Recommendations for Future Research .. 101
Conclusions ... 103

References ... 105

Appendix A Research Instrument ... 131

Appendix B IRB Approval Letter ... 137

Appendix C Permission to Use Research Instrument ... 138

vii

List of Tables

Table 1 Number of Potential Participants Recruited From Each Repository 65
Table 2 Nonresponse Bias and Range of Possible Values for the Variables of Interest 75
Table 3 Gender, Age, and Experience of Study Participants .. 78
Table 4 Descriptive Statistics for the Variables of Interest .. 79
Table 5 Percentages of Responses for Performance Expectancy (PE) Survey Items 80
Table 6 Percentages of Responses for Effort Expectancy (EE) Survey Items 82
Table 7 Percentages of Responses for Behavioral Intention (BI) Survey Items 83
Table 8 Percentage of Responses for Frequency of Use (FoU) Survey Item 84

viii

List of Figures

Figure 1 Scatterplot of Behavioral Intention vs. Performance Expectancy 85
Figure 2 Scatterplot of Behavioral Intention vs. Effort Expectancy .. 86
Figure 3 Scatterplot of Frequency of Use vs. Performance Expectancy 88
Figure 4 Scatterplot of Frequency of Use vs. Effort Expectancy .. 89

 1

Chapter 1: Introduction

 Software testing is an essential component of the software development life cycle. There

are various challenges associated with the process of testing software for defects. One such

challenge is the oracle problem, which is the difficulty inherent in testing software output for

correctness due to the lack of a test oracle (Chen et al., 2018). The oracle problem applies to

many types of scientific software. Another significant challenge for software testing is the ability

to detect all defects in a software product (Lidbury et al., 2015; Rao et al., 2013; Shahri et al.,

2019). The development of software testing methods that can effectively address these

challenges is an important area of research.

One promising approach to addressing the oracle problem and enhancing defect detection

effectiveness is metamorphic testing (MT). The MT method is a software testing method that

involves checking for the satisfaction of metamorphic relations (MRs) among a set of software

tests. These relations specify how a software program's output should change when the program

input changes in a specific way. The concept of MT was introduced over 20 years ago in a

technical report (Chen et al., 1998). The MT method has been applied to a variety of domains

since then. The current state of MT research has been surveyed in two recent articles (Chen et al.,

2018; Segura et al., 2016). The key finding from these studies is that MT has many significant

advantages, including conceptual simplicity, straightforward implementation, and cost-

effectiveness. There are also several challenges associated with the use of MT, including a lack

of MT tools, difficulties with systematically identifying and selecting useful MRs, and problems

with generating effective test cases. Kanewala and Chen (2018) explained, using a testing theory

framework, why MT is preferable for testers who lack software development experience and

how programs without test oracles can be tested using MT. They noted that the concept of MT is

 2

easy to learn and that tests that employ MT tend to be easy to implement once MRs are selected.

The advantages and drawbacks associated with MT use could affect a software developer or

tester's decision regarding whether to use MT for testing their software products.

Recent literature has discussed researchers’ experience using MT for scientific software

testing (Ding et al., 2016; Kanewala & Chen, 2018; Lin et al., 2018). The researchers’ findings

suggest that MT is highly effective at detecting software defects even when conventional testing

methods have failed. However, the rate of acceptance and use of MT among software developers

has not been studied. A better understanding of the acceptance and use of MT among software

developers and testers would enable industry and organizational leaders to take the necessary

steps to increase the use of MT. Greater use of MT could reduce the number of undetected

defects in finished software products.

One theoretical framework that could be used to understand the acceptance and use of

MT better is the unified theory of acceptance and use of technology (UTAUT). This theory was

initially developed to explain why individuals decide whether to accept and use software system

innovations. In their seminal work, Venkatesh et al. (2003) developed UTAUT as a unifying

model that integrates elements of eight previous models of information technology (IT)

acceptance. The UTAUT specifies that a set of constructs directly determines user acceptance of

new technology. Two UTAUT constructs that are highly relevant to MT are performance

expectancy (PE) and effort expectancy (EE). Performance expectancy is the extent to which the

user believes that the new technology will improve their job performance. Effort expectancy is

the perceived ease of use of the new technology. The UTAUT specifies four moderating

variables, namely age, gender, experience, and voluntariness of use.

 3

Since its development, the UTAUT has been employed in a wide variety of contexts. The

theory has been applied extensively in studies that examined mobile payment services (Al-Saedi

et al., 2019). The UTAUT has also been employed to understand the readiness of local

governments to adopt smart city technology (Gunawan, 2018), students’ acceptance of mobile

learning systems (Almaiah et al., 2019), and the willingness of potential customers to use

delivery services (Xiang & Wu, 2018). The theory was recently employed to study the

acceptance of open-source software (OSS) across organizations (Alrawashdeh et al., 2019).

Venkatesh et al. performed a thorough review of the literature that employed UTAUT

and assessed the theory's quality using an existing framework for information system (IS) theory

evaluation (2016). They concluded that UTAUT is a high-quality theory that performs

exceptionally well in the areas of importance, falsifiability, novelty, and defining its parts.

Venkatesh et al. (2016) stated that UTAUT helps leaders understand the factors underlying the

acceptance of new technologies so that effective interventions targeted at users who are less

likely to adopt new technologies can be designed. They recommended that further research be

performed on different technologies, user groups, and organizational contexts to improve the

generalizability of UTAUT. Although UTAUT has been extensively validated in the literature, it

has not been generalized to the use of specific software testing methods. The successful

application of UTAUT to the topic of the acceptance and use of MT would improve the theory's

generalizability.

Statement of the Problem

The problem that was addressed by this study is the inadequacy of conventional software

testing methods to detect all software defects, which could be mitigated by the use of the MT

method (Lidbury et al., 2015; Rao et al., 2013). The finding supports the existence of the

 4

problem that the MT method has been able to find defects in widely used and well-tested

software programs that were not found previously using other testing methods. For example,

over 100 defects were found in popular C compilers and widely used protein function prediction

tools using MT (Lidbury et al., 2015; Shahri et al., 2019). Another example of the problem is the

detection of new defects that had not been previously found in the widely used Siemens test suite

despite this suite being the subject of testing research for 20 years (Rao et al., 2013). The

problem is significant because defects in software can have severe consequences for software

users and researchers. These consequences include poor software performance, reduced precision

or accuracy of software output, and retractions of research publications for which defective

software was used (Kanewala & Chen, 2018). One significant defect in software used for

scientific research led to the retraction of five research articles, one of which was highly cited by

other researchers (Miller, 2006). Detecting software defects can be challenging due to various

factors such as the oracle problem, code complexity, and constraints on time and resources (Chen

et al., 2018; Ding et al., 2016; Zhou & Sun, 2019). The MT method is especially useful for

handling the oracle problem (Kanewala & Chen, 2018; Lin et al., 2018).

Purpose of the Study

The purpose of this quantitative correlational study was to address the problem of the

inadequacy of software testing methods for detecting all defects by enabling the researcher to

examine relationships between the use and acceptance of the MT method among open-source

developers and the constructs of performance expectancy (PE) and effort expectancy (EE). These

constructs may be related to MT use and acceptance. Another objective of the study was for the

researcher to understand how the variables of age, gender, and experience moderate these

relationships. The study purpose aligns with the research problem because the MT method has

 5

been found to detect software defects that other testing methods failed at finding (Lidbury et al.,

2015; Rao et al., 2013; Shahri et al., 2019). An improved understanding of the factors associated

with the acceptance and use of MT is helpful for designing interventions to increase MT usage

and hence reducing the number of software defects. Furthermore, this study's results are useful

for assessing the applicability of the unified theory of acceptance and use of technology

(UTAUT) to the acceptance and use of software testing methods.

Introduction to Theoretical Framework

The study's theoretical framework is the unified theory of acceptance and use of

technology (UTAUT). The UTAUT was developed to explain why individuals decide whether to

accept and use new technology (Venkatesh et al., 2003). In this framework, the constructs of

performance expectancy (PE), effort expectancy (EE), and social influence (SI) determine the

behavioral intention (BI) of the new technology. A fourth construct called facilitating conditions

(FC) determines the new technology's actual usage but not the BI. The framework contains four

variables that moderate these constructs' relationships, namely age, gender, experience, and

voluntariness of use.

The main concepts relevant to the study are the PE, EE, BI, and actual usage. The PE is

the user’s belief that the new technology will help improve their job performance or result in

other favored job-related outcomes (Venkatesh et al., 2003). The EE represents the user’s

perceived ease of use and understanding of the new technology. The BI is the user’s intention to

use the new technology. The BI can be used as a measure of user acceptance of the technology.

The technology of interest is metamorphic testing (MT) in the context of this study. In addition,

the variables of age, gender, and experience are relevant to the study because they moderate

 6

relationships among the PE, EE, and BI according to the theoretical framework (Venkatesh et al.,

2003).

The theoretical framework helped guide the study's direction by outlining factors

commonly accepted with technology usage and acceptance. The researcher employed this

framework, combined with the literature review, to select a set of constructs that may be relevant

to the acceptance and usage of MT. These constructs were used to develop the research questions

and study purpose.

 In this study, the researcher determined whether the UTAUT is useful for understanding

the acceptance and use of a software testing method. Before this study was performed, the

UTAUT had not been applied to the adoption of software testing methods. The researcher

examined the relationships between actual usage, the BI, the PE, and the EE. The results suggest

that significant relationships among these variables exist, so it can be concluded that UTAUT

can be generalized to the adoption of software testing methods. The UTAUT constructs of PE

and EE are based mainly on the technology acceptance model (TAM) variables of perceived

usefulness (PU) and perceived ease of use (PEOU), which are the primary determinants of

technology acceptance in the TAM (Davis, 1986). Thus, the study's findings also provided

information about the relevance of the TAM to the acceptance of software testing methods. The

hedonic-motivation system adoption model (HMSAM) contrasts with the UTAUT and the TAM

because it was designed for application to hedonic-motivation systems rather than utilitarian-

motivation systems (Lowry et al., 2013). However, the HMSAM also includes the PU and

PEOU, so the study's findings provided information about the applicability of this portion of

HMSAM to software testing methods.

 7

Introduction to Research Methodology and Design

The researcher employed a quantitative methodology to carry out the study. A

quantitative method was used because it is suitable for validating existing theories, testing

hypotheses, and measuring known constructs (Choy, 2014; Creswell, 2014). Quantitative

research methods align with the study’s purpose, including testing the applicability of UTAUT to

software testing methods and measuring known variables. Quantitative research is ideal for

answering the research questions, which ask about the existence of relationships among known

variables and theoretical constructs. Furthermore, the research questions were addressed using

hypothesis testing, which falls under quantitative methodology.

A correlational research design was used to carry out this research. A correlational design

was the most appropriate research design for this study because the purpose of the study is to

examine relationships between variables (Creswell, 2014). These variables are the acceptance

and use of MT and two UTAUT constructs, namely performance expectancy (PE) and effort

expectancy (EE) (Venkatesh et al., 2003). Furthermore, the research questions ask about these

relationships. The study design is appropriate for addressing the research problem by examining

the correlation between the use and acceptance of the MT method, which effectively finds

defects, and factors that could be related to the use and acceptance of the MT method.

A cross-sectional survey method was used to measure the theoretical constructs and

variables of interest. A survey method was appropriate for this study because answering the

research questions required measuring the study participants' opinions, perceptions, and

intentions (Creswell, 2014). A custom survey instrument was used to collect data from a sample

of the target population. This population consisted of contributors to OSS projects on GitHub, a

public repository for OSS projects. Venkatesh et al. (2003) published and validated an

 8

instrument to collect data about UTAUT constructs. The instrument used in the study was like it;

however, the survey items were customized to suit the study objectives. There were survey items

designed to elicit information regarding the acceptance and use of MT and the moderating

variables of age, gender, and experience. Due to the cost-effectiveness and ease of use of online

surveys, the survey was hosted on the Internet. A link to the survey was e-mailed to the

participants, along with information about the study.

A sample size of 41 participants was obtained for this study. Based on a power analysis

for which the sample size is 41, the statistical power is 0.8, and the significance level is 0.05, the

minimum correlation coefficient that can be detected is 0.42. Based on an existing study in

which GitHub contributors were surveyed, the expected response rate was approximately 24%

(Kalliamvakou et al., 2016). Given this response rate, the survey was sent to 700 contributors to

ensure an adequate sample size.

Data analysis consisted of two phases: the preliminary analysis and the post-collection

analysis. The initial analysis entailed using wave analysis to check for response bias (Phillips et

al., 2016). The post-collection analysis took place after data collection was complete. Correlation

statistics were calculated to determine the strength of the relationships among the variables and

the direction of these associations.

Research Questions

RQ1

To what extent is there a relationship between the acceptance of metamorphic testing

(MT) among open-source software developers and the following constructs: (a) performance

expectancy and (b) effort expectancy?

RQ2

 9

To what extent is there a relationship between the frequency of use of MT among open-

source software developers and the following constructs: (a) performance expectancy and (b)

effort expectancy?

Hypotheses

H10

There is no statistically significant relationship between the acceptance of MT among

open-source software developers and either of the following constructs: (a) performance

expectancy or (b) effort expectancy.

H1a

There is a statistically significant relationship between the acceptance of MT among

open-source software developers and either of the following constructs: (a) performance

expectancy or (b) effort expectancy.

H20

There is no statistically significant relationship between the frequency of use of MT

among open-source software developers and either of the following constructs: (a) performance

expectancy or (b) effort expectancy.

H2a

There is a statistically significant relationship between the frequency of use of MT among

open-source software developers and either of the following constructs: (a) performance

expectancy or (b) effort expectancy.

Significance of the Study

The study is important because the researcher used its findings to examine factors that

could affect the use and acceptance of MT. The UTAUT, a widely used and well-validated

 10

theory, served as the guiding framework. Achieving the study purpose and answering the

research questions resulted in an improved understanding of the relationship between the use and

acceptance of MT and UTAUT constructs. This enhanced knowledge could guide the design of

interventions to increase MT usage among software developers, software testers, and other

potential users. The study findings also enhanced current knowledge regarding the use of MT for

open-source software projects. Since MT effectively detects software defects, addressing the

research problem of the inadequacy of conventional testing methods for defect detection through

the increased use of MT could result in higher quality software products. The researcher also

contributed to the body of UTAUT literature by applying UTAUT to a software testing method.

The findings of the study provided insight into the generalizability of UTAUT to software testing

methods.

Definitions of Key Terms

Information system

An information system is a group of components that work together to gather, create,

process, distribute, and store data to support decision making, analysis, communication, control,

and visualization (Laudon & Laudon, 2012). Theories to explain user acceptance and use of

information systems, such as the TAM and the UTAUT, were developed and applied to various

other technologies (Al-Mamary et al., 2015; Davis, 1986; Davis et al., 1989; Venkatesh et al.,

2003).

Metamorphic relation

A metamorphic relation specifies how software output should change when the input is

changed in a specific way (Kanewala & Chen, 2018). Metamorphic relations are the foundation

of metamorphic testing.

 11

Metamorphic testing

Metamorphic testing is a software testing method that checks that metamorphic

relation(s) among a set of tests is satisfied (Kanewala & Chen, 2018). Metamorphic testing is

useful for addressing the oracle problem and detecting defects (Chen et al., 2018; Ding et al.,

2016; Kanewala & Chen, 2018; Lin et al., 2018).

Oracle problem

The oracle problem is the difficulty inherent in testing software output for correctness

due to the lack of a test oracle to compare it (Chen et al., 2018). The oracle problem is a common

challenge associated with scientific testing software (Kanewala & Bieman, 2014).

Scientific software

Scientific software is developed for scientific purposes; it is primarily used to understand

and make predictions about scientific processes in the real world (Kanewala & Bieman, 2014). It

is used to perform research and help make critical decisions (Kanewala & Chen, 2018; Yang et

al., 2018).

Software defect

A software defect is a fault in a software product that results in not meeting a software

specification or end-user requirement (Burnstein, 2003). Software defects can have severe

consequences for users (Kanewala & Chen, 2018).

Software development life cycle

A software development life cycle is a series of phases to develop and revise a software

product (Everett & McLeod, 2007). This life cycle includes planning, design, implementation,

testing, deployment, and maintenance.

Software testing

 12

Software testing is the process of validating a software product against a set of

requirements or expected behaviors (Everett & McLeod, 2007). Testing software is vital to

ensure its performance, precision, and accuracy (Kanewala & Chen, 2018; Przedzinski et al.,

2020).

Test oracle

A test oracle is a mechanism used to verify software test output (Howden, 1978). Test

oracles do not exist for all software programs, making testing difficult (Chen et al., 2018).

Summary

In this quantitative correlational study, the researcher addressed the inadequacy of

conventional software testing methods for defect detection by examining the relationships

between the use and acceptance of MT and constructs from UTAUT, a widely used and well-

validated theory of technology acceptance and use. A cross-sectional survey method was used to

measure the variables of interest. A custom survey instrument was developed to collect data from

the target population, which consisted of contributors to OSS projects on GitHub. The

correlation statistics were calculated during data analysis. The study findings could help

researchers and practitioners develop interventions for potential MT users and provide insight

into the generalizability of UTAUT to software testing methods.

 13

Chapter 2: Literature Review

Introduction

 The literature review is organized to address the study's purpose: to look at the use and

acceptance of MT among open-source software developers to improve the quality assurance of

software with UTAUT as the guiding theoretical framework. The literature review covers

various topics relating to the study problem and purpose. These topics include MT, scientific

software, software testing, open-source software development, UTAUT, and other theoretical

frameworks.

 In the first section of the literature review, the researcher's methods to locate relevant

literature are described, including keywords, search terms, Boolean logic, and databases

searched. In the second section of the literature review, the researcher discusses the guiding

theoretical framework, UTAUT, a complementary framework, namely the technology

acceptance model (TAM), and the hedonic-motivation system adoption model (HMSAM), a

contrasting framework. In the third section of the review, several themes related to the study's

purpose are discussed. These themes include scientific software quality assurance, open-source

software development, open-source software quality assurance, software testing challenges, MT

frameworks, methodologies, effectiveness, and challenges.

Methods of Searching

The use of scholarly databases was necessary for performing a thorough search of

pertinent literature. The Roadrunner Search Discovery Service provided by the Northcentral

University Library was used to search a few databases, including EBSCOhost, ProQuest, and

Google Scholar. These databases offer up-to-date scholarly publications to the research

community, including journal articles, conference proceedings, theses, and dissertations. The

 14

database searches were limited to scholarly/peer-reviewed works. Initial searches on each topic

were limited to the publication years 2015-2020 to focus on the most up-to-date literature. After

the initial search, the researcher performed another search without any date delimitations to

identify works that were less recent but still important. The search results were sorted by

relevance. Keywords used in the literature search included software testing, metamorphic testing,

user acceptance of technology, UTAUT, unified theory of acceptance and use of technology,

technology acceptance model, hedonic-motivation system adoption model, open-source

software, OSS, software quality, and scientific software.

 The researcher employed Boolean search strategies to locate articles that were highly

relevant to software quality, MT, UTAUT, TAM, HMSAM, software testing, open-source

software, and scientific software. Using Boolean search phrases such as metamorphic testing

AND frameworks, metamorphic testing AND open-source software, open-source software AND

(development OR developer), metamorphic testing AND scientific software, and (software

quality OR software testing OR software defects), the researcher was able to narrow down a

large number of search results to the most appropriate resources and to broaden the search of

relevant literature when needed to find additional resources. Other Boolean search phrases used

in the literature search included but were not limited to the following: HMSAM OR (hedonic-

motivation system adoption model), TAM OR (technology acceptance model), UTAUT OR

(unified theory of acceptance and use of technology), (quality OR testing OR defects) AND

scientific software, (software quality OR software testing OR software defects) AND (UTAUT

OR (unified theory of acceptance and use of technology), (open-source software OR OSS) AND

(UTAUT OR (unified theory of acceptance and use of technology).

 15

 Without any inclusion criteria applied, a database search yielded over 1500 works on the

topic of metamorphic testing, over 2900 works on user acceptance of technology, over 200,000

works on scientific software quality, and over 311,000 works on open-source software quality.

When the inclusion criteria of peer-reviewed publications with date delimitations between 2015

and 2020 were applied, the researcher found 899 results for metamorphic testing, 1450 results for

user acceptance of technology, 17,300 results for scientific software quality, and 61,000 works

for open-source software quality. After each search using the inclusion criteria, which included

keywords or Boolean search phrases, the researcher reviewed the abstracts of the first 50 works,

sorted by relevance, for their applicability to this study.

 The exclusion criteria used in the literature search included works on software testing and

software quality that are not directly related to metamorphic testing, open-source software,

scientific software, testing challenges, or software defects. Other exclusion criteria included

studies related to user acceptance of technology but are not relevant to UTAUT, TAM,

HMSAM, software quality, software testing, or open-source software. Even though they

contained the search keywords, any resources that were not relevant to the topics covered in this

literature review were also excluded.

 Most of the literature review resources were published within the last five years (2015-

2020). Scholarly journal articles and conference proceedings provided information on state-of-

the-art research. Seminal works introduced and described essential concepts and frameworks

such as MT, TAM, HMSAM, and UTAUT. Survey articles on these topics provided an overview

of the current literature and insights derived from synthesizing it. The researcher identified 70

additional resources by manually searching the bibliographies of survey articles and seminal

works. A total of 152 resources were identified for inclusion in this literature review. The

 16

researcher did not locate any resources relating to the acceptance and adoption of metamorphic

testing. One of the objectives of this study was to address this gap in the literature.

Theoretical Perspective of the Study

Unified Theory of Acceptance and Use of Technology

The unified theory of acceptance and use of technology (UTAUT) is a theory that was

developed to explain why individuals decide whether to accept and use innovations in software

systems. In their seminal work, Venkatesh et al. (2003) developed UTAUT as a unifying user

acceptance model that integrates elements of eight previously developed models. These models

are as follows: theory of reasoned action, technology acceptance model, theory of planned

behavior, a model that combines the technology acceptance model and the theory of planned

behavior, innovation diffusion theory, motivational model, model of PC utilization, and social

cognitive theory (Ajzen, 1991; Bandura, 1986; Davis, 1989; Davis et al., 1992; Fishbein, 1967;

Rogers, 1995; Taylor & Todd, 1995; Thompson et al., 1991; Venkatesh & Speier, 1999).

As a starting point for the development of UTAUT, Venkatesh et al. (2003) reviewed IT

user acceptance literature and assessed the similarities and differences between the eight older

user acceptance models. The authors performed a within-subjects longitudinal comparison and

validation of these models to evaluate their explanatory power. The researchers formulated

UTAUT based on the similarities across these eight models. The authors then empirically

validated UTAUT by comparing its performance to each of the original models' performance.

For this performance study, the authors gathered data from four organizations for six months

relating to a new technology introduced to employees. After data collection was complete, the

researchers analyzed how well each of the models explained the variance in the employees'

 17

intentions to use the new technology. The authors found that UTAUT outperformed the other

eight models.

Furthermore, the researchers cross-validated the UTAUT by applying the models to new

data from two different organizations. The authors concluded that UTAUT is useful for

understanding the factors underlying technology acceptance so that effective interventions

targeted at users who are less likely to adopt new technologies can be designed. They

recommended further research relating to different types of technology, user groups, and

organizational contexts to improve the generalizability of UTAUT.

The UTAUT stipulates that four constructs directly determine user acceptance or usage of

new technology. These constructs are as follows: performance expectancy (PE), effort

expectancy (EE), social influence (SI), and facilitating conditions (FC). The PE construct

encompasses the extent to which the user believes that the new technology will help improve

their job performance or result in other favored outcomes, such as increased salary or promotion

(Compeau et al., 1999; Davis, 1989; Davis et al., 1992; Moore & Benbasat, 1991; Thompson et

al., 1991). After validating UTAUT, Venkatesh et al. (2003) found that the PE was the strongest

predictor of a user’s intention to use a new technology across all user acceptance models. The EE

construct includes the user’s perceived ease of use, ease of learning to use, and understanding of

the new technology (Davis, 1989; Moore & Benbasat, 1991; Thompson et al., 1991). The SI

construct includes the extent to which the user believes that other people think they should use

the new technology and how they feel their social status will be affected by using the technology.

This construct also encompasses the organization's perceived supportiveness for using the new

technology (Ajzen, 1991; Moore & Benbasat, 1991; Thompson et al., 1991). The FC construct

encompasses self-efficacy, constraints on user behavior, compatibility of the new technology

 18

with the user’s tasks and work style, and the extent to which the user believes that adequate

technical and organizational infrastructure exists to support the latest technology (Ajzen, 1991;

Moore & Benbasat, 1991; Thompson et al., 1991). Unlike the other three constructs, the FC

construct is not a significant predictor of intention to use, but it is a significant predictor of actual

use (Venkatesh et al., 2003).

In addition to the four primary constructs, UTAUT stipulates four key moderating

variables, namely age, gender, experience with the new technology, and voluntariness of using

the technology. When validating UTAUT, Venkatesh et al. (2003) found that the PE construct

was significant regardless of experience or voluntariness of use. The significance of the EE

construct declined as experience increased. Furthermore, the researchers observed that the

importance of the PE and EE constructs was moderated by age and gender; the PE construct was

more important for younger and male study participants, and the EE construct was more

important for older and female participants. The authors found that the SI construct was more

important for older and female participants when the new technology was mandatory and when

the user lacked experience with the technology.

Since its development, UTAUT has been used and validated in a wide variety of

applications. The UTAUT is one of the most popular models among researchers for predicting

technology use and acceptance (Al-Mamary et al., 2015). Recent reviews of empirical studies

that apply UTAUT found that this theory's quality is high, robust, and valid (Venkatesh et al.,

2016; Walldén et al., 2016). Venkatesh et al. (2016) found that it performs exceptionally well in

the areas of novelty, importance, falsifiability, and definition of its parts. The theory has been

employed extensively in studies that examine the acceptance and adoption of social media and

mobile payment services (Al-Qaysi et al., 2020; Al-Saedi et al., 2019). Besides, the UTAUT was

 19

used to understand the readiness of local governments to adopt smart city technology, students’

acceptance of mobile learning systems, and the willingness of potential customers to use delivery

services (Almaiah et al., 2019; Gunawan, 2018; Xiang & Wu, 2018). The theory has been used

to propose evaluating a tool that helps patients with social cognition deficits (García et al., 2019).

Although the UTAUT has not been applied to software testing methods, it has been used for

studying processes and practices for managing and developing software (Anderson, 2019;

Guardado, 2012). Recently, the UTAUT was employed to analyze the acceptance of open-source

software (OSS) across organizations (Alrawashdeh et al., 2019).

Studies that use UTAUT as a theoretical framework employ quantitative methodology

with a correlational or regression research design (Almaiah et al., 2019; Alrawashdeh et al.,

2019; García et al., 2019; Gunawan, 2018; Xiang & Wu, 2018). A review of mobile payment

service adoption studies that applied UTAUT found that survey questionnaires were used to

collect data in 80% of the studies (Al-Saedi et al., 2019). In a recent survey of information

systems (IS) studies that employed UTAUT, Venkatesh et al. (2016) found that the effects of the

standard UTAUT moderating variables are rarely included in these studies' research design. In

many studies that applied UTAUT, the researchers modified or extended the theory by using

constructs or moderating variables other than the ones specified by UTAUT to understand

specific relationships better. In their meta-analysis, Dwivedi et al. (2017) found that only 25% of

UTAUT studies did not include additional constructs and suggested that attitude should be

included as a mediating construct in UTAUT. Perceived risk and perceived trust were commonly

used as constructs in studies on mobile payment adoption, and IT specialty was used as a

moderator in a study on the use and acceptance of OSS (Alrawashdeh et al., 2019; Al-Saedi et

al., 2019). Venkatesh et al. (2012) designed UTAUT2, an extended version of the theory to study

 20

technology acceptance and usage in consumer contexts. The UTAUT2 includes the additional

constructs of price value, habit, and hedonic motivation.

Although UTAUT has been extensively validated and widely used to study technology

acceptance and use, the theory has not been without criticism. In a systematic review of IS

studies that utilized UTAUT, Venkatesh et al. (2016) used a systematic framework of theory

evaluation to evaluate UTAUT. They concluded that, although the quality of the theory overall is

high, its parsimony is low. This criticism was shared by Bagozzi (2007) in a critique of the TAM

and its extensions. Venkatesh et al. (2008) criticized the UTAUT constructs of FC and

behavioral intention (BI) because these constructs excluded external behavioral determinants that

could change over time, such as limitations in user ability and environmental factors.

Furthermore, these constructs had weak predictive power when information regarding behavior

is incomplete. The authors proposed the new construct of behavioral expectations to address

these limitations.

In this study, the researcher assessed whether UTAUT applies to the acceptance and use

of software testing methods, specifically MT. The study's purpose was for the researcher to

examine the relationships between two UTAUT constructs, namely PE and EE, and the

acceptance and usage of MT. The research questions, along with their associated hypotheses,

focus on these relationships. The extension of UTAUT to software testing methods addresses the

research problem of the inadequacy of conventional software testing methods because it can

improve the current understanding of the factors associated with adopting specific software

testing methods. This increased knowledge could help develop interventions that increase the

usage of more effective testing methods, which could lead to a decline in defects and an

improvement in software quality. The UTAUT was the theoretical basis for the dissertation

 21

research design. The UTAUT is the most widely used and validated technology acceptance

model and has been shown to outperform other technology acceptance models.

Technology Acceptance Model

The technology acceptance model (TAM) predicts and explains user acceptance and

usage of information systems and computing technologies. It is one of the eight user acceptance

models on which UTAUT is based. The TAM was developed to provide a parsimonious

acceptance model that was general enough to be successfully applied to a wide range of

computing technologies and users (Davis, 1986; Davis et al., 1989). The TAM adapts to the

more general theory of reasoned action (TRA) (Ajzen & Fishbein, 1980; Fishbein & Ajzen,

1975). In contrast to the TRA, the TAM is used only to predict and explain the usage of

computing technologies.

 In their seminal work, Davis (1986) proposed the TAM to enhance understanding of user

acceptance of new systems, which would improve the success rate of system design and

implementation. Another objective of the TAM was to provide the theoretical underpinning to

user acceptance testing, in which prototypes of new systems would be demonstrated to potential

users who would then be questioned about their intention to use the latest technologies. Davis

(1986) selected the TRA as the TAM's theoretical framework and modified the TRA to suit the

context of computing technology acceptance and usage. The TRA is a behavioral intention

model from social psychology that has been used to explain human behavior in many different

domains (Ajzen & Fishbein, 1980; Fishbein & Ajzen, 1975). Next, Davis (1986) reviewed

literature in social factors and management information systems to locate empirical evidence for

the proposed TAM and developed measures for the model variables. These variables were

validated via a field survey of organizational end-users. Finally, an experiment that tested student

 22

acceptance of two graphics systems was conducted to verify the TAM structure and check

proposed modifications to the model.

The TAM stipulates that two variables, namely perceived usefulness (PU) and perceived

ease of use (PEOU), are the primary determinants of technology acceptance behaviors. The PU is

the extent to which the user believes that using the new technology will improve their job

performance (Davis, 1986). The PEOU is the degree to which the user accepts that using the

latest technology will be effortless. The PU and the PEOU are like the UTAUT constructs of the

PE and the EE, respectively. However, because UTAUT was developed as a unifying model for

TAM and seven other models, the UTAUT constructs are broader than the TAM variables. The

PE construct includes not only the PU but also additional favored outcomes, such as increased

salary or promotion (Compeau et al., 1999; Davis, 1989; Davis et al., 1992; Moore & Benbasat,

1991; Thompson et al., 1991). The EE construct encompasses the perceived ease of learning to

use and understand the new technology and the PEOU. In the TAM, the PEOU is one of the

determinants of the PU, whereas, in the UTAUT, the PE and EE constructs are not significantly

related. The TAM specifies that the PEOU and the PU may be affected by external variables,

such as system design characteristics, system features, or feedback-based learning (Davis et al.,

1989). The four moderating variables in the UTAUT are absent from the TAM.

There are similarities and differences between the UTAUT and the TAM regarding the

relationships between behavioral intention (BI) and the other model constructs. Like the

UTAUT, the TAM stipulates that the BI determines actual usage behaviors (Davis et al., 1989;

Venkatesh et al., 2003). However, in the UTAUT, the construct of facilitating conditions (FC)

also determines usage behaviors. Furthermore, in the TAM, the BI is determined by two

variables: the PU and the user’s attitude toward using the new technology (A). The A construct is

 23

itself determined by the PU and the PEOU. In the UTAUT, the BI is determined by three

constructs: PE, EE, and social influence (SI). The A construct is not a component of UTAUT.

Some researchers have pointed out methodological weaknesses in studies that employ the

TAM or a TAM derivative. One common flaw in studies that employ the TAM or UTAUT is

that subjective measurements such as self-reporting are frequently used to measure technology

usage, with objective measurements of usage seldomly used (Legris et al., 2003; Walldén et al.,

2016). The difference between objective and subjective usage measures can be significant and

affect the study findings relating to the relationships between model constructs (Straub et al.,

1995; Wu & Du, 2012). The BI is also measured more often than actual usage (Turner et al.,

2010). A meta-analysis performed by Wu and Du (2012) found that the BI was less correlated

with usage when usage was measured objectively; they suggested that more TAM studies

measure usage. Cross-sectional studies do not consider the possibility that the user’s intention,

perceptions, and use may change over time. Many TAM studies were laboratory studies, which

means that these studies' findings are not necessarily generalizable to real-world scenarios

(Yousafzai et al., 2007).

Although the TAM has been extensively validated, its simplicity has led to many

researchers extending the original model to suit the objectives of their studies in educational,

translation, and mobile technology contexts. Examples of the additional variables and constructs

added to these extensions include perceived organizational culture, organizational policy, trust,

self-efficacy, perceived compatibility, perceived satisfaction, perceived security, perceived task-

technology fit, learning style, and motivation (Al-Azawei et al., 2017; Al-Maroof, 2020; Huang

& Teo, 2019; Leong et al., 2018; Shankar & Kumari, 2019). The relationships between the TAM

constructs have been replicated by other research teams (Adams et al., 1992; Hendrickson et al.,

 24

1993; Segars & Grover, 1993; Subramanian, 1994; Szajna, 1994). Furthermore, the reliability,

internal consistency, and validity of the survey instrument used by Davis (1989) were

demonstrated by other researchers (Adams et al., 1992; Hendrickson et al., 1993; Szajna, 1994).

However, the TAM has often been criticized for its low predictive and explanatory power in

various contexts (Ajibade, 2018; Chandio et al., 2017; Chuttur, 2009; Hai & Alam Kazmi, 2015;

Hojjati & Khodakarami, 2016; Legris et al., 2003; Li, 2020; Lim et al., 2016).

In addition to these extensions, several significant modifications to the original TAM

have been developed to address its weaknesses, including TAM2, TAM3, and the UTAUT

(Venkatesh & Bala, 2008; Venkatesh & Davis, 2000; Venkatesh et al., 2003). The TAM2 adds

the constructs of social influence and cognitive instrumental processes as determinants of the PU.

The social influence construct includes voluntariness, image, and subjective norm, which is the

user’s perception that important people believe they should use the new technology (Fishbein &

Ajzen, 1975). The TAM2 posits that subjective norm is a determinant of the BI in addition to the

PU. The construct of cognitive instrumental processes encompasses the PEOU, output quality,

job relevance, and demonstrability of results. The TAM2 also posits experience and perceived

voluntariness as moderators of the relationship between subjective norm and BI. The UTAUT,

which has been discussed previously, was developed to unify TAM with seven other acceptance

models and improve TAM's explanatory and predictive power.

The TAM3 combines the TAM2 with research findings suggesting that the constructs of

perceived enjoyment, objective usability, computer self-efficacy, computer anxiety, computer

playfulness, and perceptions of external control be added to the model as determinants of the

PEOU (Venkatesh & Bala, 2008; Venkatesh & Davis, 2000). The TAM3 also posits that

experience moderates more construct relationships than in the previous TAM models. The

 25

TAM3 was created to have more potential for actionable guidance about creating effective

interventions than the original TAM; consequently, the TAM3 is more comprehensive but less

parsimonious than the original model. Although the TAM3 is successful at explaining the

variance in the PU and the PEOU constructs, its explanatory power with regards to behavioral

intention and usage is lower than that of UTAUT (Venkatesh & Davis, 2000; Venkatesh et al.,

2003). Due to the lower explanatory and predictive power of TAM and its derivatives than

UTAUT, the latter model was chosen to be the main theoretical framework for this study.

Hedonic-Motivation System Adoption Model

 The hedonic-motivation system adoption model (HMSAM) was proposed by Lowry et al.

(2013) to study the acceptance and use of a hedonic-motivation system (HMS), which is a

technological system that is used mainly to satisfy intrinsic motivations. In other words, an HMS

is adopted for enjoyment rather than utility. In its focus on HMS, the HMSAM contrasts with

models like the TAM and UTAUT, which focus on the adoption of a utilitarian-motivation

system (UMS) (Davis, 1986; Venkatesh et al., 2003). The HMSAM was developed to address

the lack of IS research on HMS despite the substantial increase of HMS usage throughout the

2000s in the form of gaming systems, personal computing, mobile computing, and social media

(Brown & Venkatesh, 2005; Hsu & Lu, 2007; Jegers, 2007). The necessity of developing models

specifically for HMS acceptance and usage stems from the fundamental distinction between the

reasons for using an HMS and those for using a UMS. The HMS users are driven chiefly by the

promise of intrinsic rewards and the user experience, whereas UMS users are motivated

primarily by external rewards and specific usage outcomes (Sweetser & Wyeth, 2005; Venkatesh

et al., 2003). However, researchers have recognized that intrinsic motivation may also play a role

 26

in UMS adoption; constructs representing intrinsic rewards have been added to UMS acceptance

models such as TAM3 (Venkatesh & Davis, 2000).

 The HMSAM has been employed to study the acceptance and use of HMS as well as

gamified UMS. The model was used to assess the effects of gamification on a mobile health

application, a tool for software requirements gathering, an educational environment for

undergraduate students, a security training system, and a 3D multiuser virtual learning

environment for training agricultural surveyors (Oluwajana et al., 2019; Saphira & Rusli, 2019;

Setiawan & Suryadibrata, 2019; Silic & Lowry, 2020). The HMSAM was employed to evaluate

consumer participation in virtual reality (VR) tourism; a moderating variable that specified

whether the user was a visitor or non-visitor at the portrayed destination was added to the

original model (Kim & Hall, 2019).

 The HMSAM is based on the hedonic-system acceptance model, a variation of the TAM

proposed by van der Heijden (2004). The hedonic-system acceptance model includes the

constructs of joy, the PU, the PEOU, and the BI. One significant difference between HMSAM

and this earlier model is the incorporation of the subconstructs of cognitive absorption (CA) into

HMSAM. The older hedonic-system acceptance model represents intrinsic motivation only by

joy and does not include other types of intrinsic motivation. The CA construct, which was

proposed by Agarwal and Karahanna (2000), represents various factors associated with intrinsic

motivation, namely joy, curiosity, control, focused immersion, and temporal dissociation. The

joy construct represents the fun and pleasurable aspects of HMS usage. The curiosity

subconstruct signifies the degree to which the user’s experience using the HMS awakens their

curiosity. Control is defined as the user’s perception that they are in control of their interaction

with the system. Focused immersion is the user’s experience of complete engagement with the

 27

HMS to the extent that they ignore other stimuli. Finally, temporal dissociation is the user’s

inability to notice the amount of time elapsed while using the HMS.

 Lowry et al. (2013) validated the HMSAM by performing two studies relating to gaming:

an experiment involving the use of various scripted scenarios and graphical storyboards and a

laboratory experiment involving the use of real-world games. The participants were students at a

private university in the United States. The scenarios included three different types of games and

various levels of joy and PEOU to which participants were randomly assigned. After this study,

the participants took a survey with questions about their hypothetical reactions to each scenario.

Based on the results of the first study, the second study involved participants randomly assigned

to play four games that were chosen to represent various levels of joy and PEOU.

 The HMSAM consists of seven constructs: the PEOU, the PU, the BI, curiosity,

immersion, joy, and control (Lowry et al., 2013). The model posits the following relationships

among these constructs: joy and curiosity are determinants of immersion, curiosity is a

determinant of the BI, the PEOU is a determinant of the PU as well as of curiosity and control,

control is a determinant of both immersion and the BI, and immersion and the PU are

determinants of the BI. The PEOU and the PU are like the UTAUT constructs of the PE and EE.

However, the UTAUT constructs are broader than these TAM-derived constructs. The PE

construct includes other favored outcomes and PU, such as increased salary or promotion

(Compeau et al., 1999; Davis, 1989; Davis et al., 1992; Moore & Benbasat, 1991; Thompson et

al., 1991). The EE construct encompasses the perceived ease of learning to use and understand

the new technology and the PEOU. In the HMSAM, the PEOU is a determinant of the PU,

whereas, in the UTAUT, the PE and EE constructs are not significantly related. The HMSAM

construct of control is included in the UTAUT construct of facilitating conditions (FC). Some

 28

researchers proposed the inclusion of the construct of attitude, which would include joy, in the

UTAUT (Dwivedi et al., 2017). The UTAUT2, an extension of the UTAUT intended for

consumer contexts, includes the construct of hedonic motivation (Venkatesh et al., 2012).

 The HMSAM was not chosen as the main theoretical framework for this study because it

is intended for studying HMS rather than UMS. The research problem addressed by this study

was the inadequacy of conventional software testing methods for detecting defects. The study's

purpose was to examine relationships relating to the acceptance and use of MT, a software

testing method. Since the technology of interest in this study is primarily used for work-related

purposes rather than enjoyment, the HMSAM is less pertinent to the study than technology

acceptance models intended for use with UMS, such as UTAUT.

Review of the Literature

Scientific Software Quality Assurance

Scientific software is used to perform scientific research and make critical decisions and

predictions (Kanewala & Bieman, 2014; Kanewala & Chen, 2018; Yang et al., 2018). Defects in

scientific software can have severe consequences, including reduced computational performance,

decreased accuracy or precision of software output, and publication retractions (Abackerli et al.,

2010; Hatton, 1997; Hatton & Roberts, 1994; Kanewala & Chen, 2018; Miller, 2006). Thus,

ensuring software quality is an essential component of scientific software development.

Scientific software quality assurance involves addressing challenges unique to scientific

software, including code complexity, the oracle problem, approximations in numerical

calculations, and cultural differences between software engineers and scientist-developers.

Testing scientific software is critical for ensuring precision and accuracy (Przedzinski et al.,

2020). Multidisciplinarity in scientific software can lead to overly complicated code, challenging

 29

to validate and maintain (Ober & Ober, 2017). In a systematic literature review, Kanewala and

Bieman (2014) found that the oracle problem was one of the leading causes of challenges

associated with testing scientific software. The oracle problem is the difficulty or impossibility in

verifying the correctness of test case results because a test oracle for the software program does

not exist (Chen et al., 2018; Ding et al., 2016). Kanewala and Bieman (2014) found that

metamorphic testing (MT) appears to be the most promising solution to testing without oracles.

Recent literature has outlined approaches for developing metamorphic relations (MRs) and

discussed the researchers’ encouraging experiences with using MT for scientific software testing

(Ding et al., 2016; Kanewala & Chen, 2018; Lin et al., 2018).

The use of computational approximations in scientific software poses additional quality

assurance challenges. Computational approximations are often employed in software to increase

a physical problem (Dubois, 2012; Hinsen, 2015; Toronto & McCarthy, 2014). These

approximations include physical laws, discretization, floating-point algorithms, and optimization.

Such approximations can cause inaccuracies in numerical results and lack of reproducibility due

to the accumulation of rounding errors and the rearrangement of floating-point operations by

compilers (Diethelm, 2012; Hinsen, 2015; Toronto & McCarthy, 2014). A case study performed

by Hinsen (2015) found that these issues make testing scientific software especially challenging.

The author suggested that programming languages allow developers to specify floating-point

operations' order and assess the impact of optimizations by writing specifications at the floating-

point level and testing programs against these specifications. Toronto and McCarthy (2014)

explained the framework of floating-point theory to help developers understand how to

implement and test floating-point operations. The authors introduced tools for debugging

floating-point code. They recommended using a test-debug cycle with two different versions of

 30

the same function, using higher precision numbers. However, the proposed approach was only

tested on three small functions rather than on sizeable real-world software programs. Diethelm

(2012) discussed the lack of reproducibility of many algorithms that run on high-performance

computing (HPC) systems but noted that non-reproducibility is often not considered a problem.

The researcher found that the output of a finite element method (FEM) simulation was slightly

different when different processors were used to run it, even though the input values remained

the same. The author recommended that developers discuss reproducibility issues in software

documentation and provide reproducible versions of routines to end-users who need them.

Other issues associated with scientific software quality assurance involve the availability

of resources for scientific software projects and differences in software development practices

between software engineers and scientist-developers (Basili et al., 2008; Kanewala & Bieman,

2014; Katzman et al., 2018; Kelly et al., 2011; Leman et al., 2020; Méndez et al., 2014; Russell

et al., 2019; Storer, 2017). Although not all traditional software engineering practices apply to

scientific software projects, studies have shown that scientist-developers could benefit from

collaboration with software engineers in various areas. These areas include design, refactoring,

documentation, testing, maintenance, optimization, inspection, and project management

(Farhoodi et al., 2013; Heaton & Carver, 2015; Kelly et al., 2011; Koteska et al., 2018; Russell et

al., 2019; Sanders & Kelly, 2008). One reason for the gap between scientist-developers and

software engineers is that scientist-developers tend to learn software development skills from

other scientists rather than professional software developers (Basili et al., 2008; Kellogg et al.,

2019). Scientist-developers tend to focus on the short-term goal of enabling the software package

to meet the immediate requirements of the research and neglect the long-term goals of making

the software package robust, maintainable, and generalizable (Morris & Segal, 2009; Riesch et

 31

al., 2020). Three field studies found that scientist-developers who lead software development

teams tend to lack an understanding that continued funding is needed to properly maintain the

software (Segal, 2008a; Segal, 2008b; Segal, 2009). They also found that scientist-developers

often do not allocate additional funding for ensuring that a software package is highly robust and

generalizable to research problems other than the one it was initially intended to solve. Similarly,

Katzman et al. (2018) noted there is often a lack of funds for the employment of a dedicated

team of software developers due to funds decreasing after the initial version of the software is

deployed. They also stated that many open-source scientific projects are released but not widely

used over time.

Software development frameworks, specifically for use with scientific software projects,

have been proposed to ameliorate these challenges (Katzman et al., 2018; Riesch et al., 2020).

Riesch et al. (2020) created a template for small to medium-sized scientific software projects

written in C++ and Python. This template implements a set of best software engineering

practices, including version control, code formatting, static analysis, continuous integration, unit

testing, code coverage reporting, and documentation. Katzman et al. (2018) proposed an

evolutionary software development model intended to develop and maintain open-source

scientific software packages. They created this model from a case study focusing on the eleven-

year history of the development of AceTree, an open-source software package for the editing and

analysis of nuclear lineage data (Bao et al., 2006; Boyle et al., 2006). A core team of developers,

who work closely with those who regularly use the software, perform updates to the software

project intermittently throughout its lifetime in response to feedback from its userbase,

modifications to any software packages that the project depends on, and hardware updates

(Katzman et al., 2018). The model provides a process by which a scientific software project can

 32

remain usable and relevant to its userbase and the research community without requiring a full-

time well-funded team of staffers to maintain it. The software project is not entirely dependent

on the open-source community to perform essential updates and add new features.

Frameworks have also been proposed for the improvement of scientific software

processes and the assessment of scientific software quality, such as the hybrid scientific software

process improvement framework (SciSPIF) and a quantitative quality model (Koteska et al.,

2018; Mesh et al., 2014; Mesh et al., 2016). Koteska et al. (2018) developed a model that

assesses scientific applications' quality using a set of quantitative metrics and attributes. These

metrics and attributes include reliability, maintainability, portability, complexity, and modularity.

Mesh et al. (2014) proposed SciSPIF to allow scientific software developers to make more

informed decisions regarding software development practices to meet software quality goals

given real-world constraints such as cost, time, and effort. Software development is costly,

especially during the maintenance phase, and each project faces unique constraints (Méndez &

Tinetti, 2017; Mesh et al., 2016). One goal of SciSPIF is to understand how scientific software

development teams make decisions and share this knowledge with other groups to improve their

development practices. To demonstrate how the data used to build the SciSPIF should be

gathered and analyzed, the authors provide an example of how qualitative data can be collected

from written reports and interview transcripts, analyzed, encoded, and categorized into themes

(Mesh et al., 2014). The effectiveness of SciSPIF was not systematically evaluated. When more

data is gathered and interpreted, the authors plan to develop theories to describe the application

of software development practices to scientific software projects (Mesh et al., 2014). Making the

framework flexible and accessible to developers of various skill levels is another research goal

(Mesh et al., 2016).

 33

 The unique challenges associated with testing scientific software necessitate the need for

specialized testing approaches. Unique test development methodologies and software

development processes have been used for the quality assurance of scientific software.

Researchers have examined the use and adaptation of existing software testing methods for

scientific software, proposed the use of variability modeling for developing system test

applications for scientific frameworks, and proposed methodologies for granular test creation and

test case selection (Dubey & Wan, 2018; Hovy & Kunkel, 2016; Kanewala & Bieman, 2014;

Remmel, 2014). Remmel (2014) demonstrated that software product line engineering (SPLE),

especially variability modeling, can improve the quality assurance of scientific software code

frameworks, which are standard codes that provide solutions to mathematical problems. The

author used environments for automated testing and feature-oriented development to demonstrate

the approach. The author also performed a case study that examined developers' attitudes

towards the development of variability models and desk-checking and found they were both

feasible and accepted by the developers. It should be noted that only one framework was tested.

Hovy and Kunkel (2016) created a tool for automating the creation of unit tests for

subroutines of high-performance scientific Fortran programs. Dubey and Wan (2018) proposed

test development frameworks for scientific software testing involving granular test creation and

test case selection using scaffolding. The authors used two complex multiphysics programs as

case studies to assess these techniques. They found that testing time was significantly reduced,

and that testing should be performed at the beginning of the software design process to maximize

software quality and productivity. However, they did not evaluate their approach's effectiveness

for the detection of software defects.

 34

Test-driven development (TDD) is a software development methodology that reduces

risk by incorporating thorough and continuous testing into the development lifecycle.

Researchers have proposed a fine-grained implementation of TDD and examined the benefits

and drawbacks of using TDD for high-performance scientific software (Nanthaamornphong &

Carver, 2018; Rilee & Clune, 2014). In their case study of an HPC software project,

Nanthaamornphong and Carver (2018) found that TDD helped the developers think about

software design and focus on small functional units of code; the refactoring process helped

reduce code complexity and enhance performance. The drawbacks of using TDD were the

challenges associated with writing useful tests and refactoring code. A limitation of the study is

that only one team participated in the study; this team was small and inexperienced with TDD.

Rilee and Clune (2014) proposed the employment of a fine-grained implementation of TDD to

avoid concerns regarding the oracle problem and error accumulation caused by using finite-

precision arithmetic. They discussed HPC software development requirements and how their

proposed approach fills the gaps between the parallel Fortran Unit testing framework (pFUnit),

fine-grained testing of scientific software, and an easy-to-use TDD framework. They

recommended refactoring coarse-grained code and creating a set of fine-grained unit tests. Along

with pFUnit, these capabilities are ideally provided to the user via an integrated development

environment (IDE). A limitation of this study was that the IDE is still in development and that

the authors’ proposed approach was not tested.

Two other software development methodologies that have been studied for application to

scientific software are document-driven design (DDD) and change-driven development (CDD).

Document-driven design is a software development process intended to enhance the rigor of

software design and documentation. Smith et al. (2016) assessed the impact of redeveloping

 35

scientific software projects using DDD by interviewing five software projects' code owners. The

code owners harbored positive feelings towards using a systematic approach to software

development. Still, they felt that the documentation required by DDD takes too much time and

effort to create. The researchers noted that this problem might have been caused by the time

needed for ethics approval for the study. As a result, there was a lack of communication between

the researchers and the study participants regarding the DDD artifacts' purpose and development.

Change-driven development, which was proposed by Méndez and Tinetti (2017), is agile,

incremental, change-driven, and iterative. The purpose of CDD is to provide a systematic

approach for updating and parallelizing sequential Fortran programs that were written decades

ago but are still in use today. Another objective of CDD is to address the observation that

scientific software packages tend to evolve slowly compared to other software types. The authors

conducted two case studies in which CDD was employed to parallelize one Fortran 77 program

and transform another Fortran 77 program into a Fortran 90 program. They used these case

studies to demonstrate that CDD is a viable approach for the modernization of older scientific

applications that are still in use today.

Open-Source Software Development

 Open-source software (OSS) communities tend to contain two types of developers: core

developers and non-core developers. Core developers guide the development, management, and

maintenance of an OSS project, tend to be involved with the project over a more extended period

than non-core developers, and are more active in contributing to the project than are non-core

developers (Mockus et al., 2002; Nakakoji et al., 2002; Yamashita et al., 2015). Researchers

have found that a small proportion of the contributors to an OSS project make most of its code

contributions (Avelino et al., 2016; Dinh-Trong & Bieman, 2005; Geldenhuys, 2010; Mockus et

 36

al., 2002). The findings of several studies in which small sample sizes of one to nine projects

were used indicated that OSS projects follow the Pareto principle, which means that

approximately 20% of the developers make about 80% of the contributions (Goeminne & Mens,

2011; Koch & Schneider, 2002; Robles et al., 2004). However, a more recent study that used a

sample size of thousands of projects employed multiple heuristics for determining which

contributors were core developers (Yamashita et al., 2015). This study controlled for the

variables of project age, team size, and project size. The study findings showed that a substantial

percentage of OSS projects on GitHub does not follow the Pareto principle. For most of the

projects that do not comply with the Pareto principle, the percentage of core developers is less

than 20%. The same study found that most OSS projects have fewer than 16 core developers and

that about 20% of the contributions of both core and non-core developers are to correct software

defects.

 Because the number of core contributors to an OSS project is often small, the departure

of contributors poses a significant problem for the long-term maintenance and evolution of the

project (Coelho & Valente, 2017; Hertel et al., 2003). Contributor turnover can reduce

productivity because new contributors must spend additional time learning how the software

works and gaining knowledge relevant to the project (Lin et al., 2017). One primary reason for

the departure of new contributors from OSS projects is the non-acceptance of their first

contributions by the core developers (Steinmacher et al., 2014; Steinmacher et al., 2015;

Steinmacher et al., 2018). Steinmacher et al. (2018) found that about one-third of new

contributors who failed to get their GitHub pull requests accepted disagreed with the decision. A

significant percentage of these contributors stated that the nonacceptance was demotivating or

prevented them from contributing to the project.

 37

Furthermore, the study participants cited duplicated pull-requests, vision mismatch

between the participant and the rest of the project team, lack of interest in the contribution from

project integrators, the participant’s lack of experience or commitment, and the contribution not

being an optimal solution as the main reasons why their contribution was not accepted. The

contribution’s lack of tests and its introduction of side effects were reasonably common cited

reasons for nonacceptance. The same study found that project integrators cited a lack of need or

relevance of the contribution and not following project guidelines as their reasons for not

accepting new contributors’ pull requests. Similarly, Gousios et al. (2015) found that code style,

code quality, documentation, adherence to project norms, and alignment with project objectives

were essential factors in integrators’ decision to accept a contribution. The most common reason

given by the new contributors for contributing to an OSS project was to fix a defect.

Open-Source Software Quality Assurance

 Developer turnover can affect software projects (Foucault et al., 2015; Mockus, 2010).

Foucault et al. (2015) examined the relationship between OSS quality as measured by the density

of bug-fixing commits and developer turnover. They looked at the departures of contributors

from five widely used OSS projects and developers' movement between different modules of the

projects. The researchers found that the OSS projects had high turnover rates despite their

popularity and that internal turnover had little relationship with software quality. However, they

also observed that higher external turnover correlated strongly with lower quality software

modules due to a strongly negative relationship between newcomer activity and software quality.

The study was limited by its small sample size and its use of only one software quality measure.

Similarly, Lu et al. (2016) noticed that casual contributors introduced more code quality

issues to OSS projects than core contributors. The problems were more severe than those caused

 38

by core contributors. In a study of a single software project, Mockus (2010) found that external

turnover negatively affects software quality because of the loss of experience and expertise

resulting from developers' departure. However, the author observed that newcomers did not

affect software quality, perhaps because newcomers were not assigned to essential tasks.

The reuse of third-party software libraries can affect OSS projects (Constantinou et al.,

2015; Zaimi et al., 2015). Many studies of OSS projects found that the reuse of third-party

libraries is common in such projects (Constantinou et al., 2015; Haefliger et al., 2008; Schwittek

& Eicker, 2013; Zaimi et al., 2015). Constantinou et al. (2015) observed that the object-oriented

design quality of white box reused classes was higher than that of system classes. However, the

design quality metrics of cohesion and coupling were negatively affected by third-party library

reuse. The researchers also found that white box reused elements were seldom removed from the

project once added. The developers did not appear to prioritize design quality in their selection of

reusable software elements. The researchers suggested basing reuse decisions on quality criteria

and not overusing third-party software elements, as this could result in increased resources

needed for testing and maintenance.

Similarly, Zaimi et al. (2015) observed that third-party library updates and removal are

uncommon and that many reuse decisions are not revisited. They also noted a relationship

between design quality and third-party library update decisions, although it was not statistically

significant due to the small sample size. The authors recommended that developers revisit their

reuse decisions often and update reused libraries to their newest versions since the updated

versions are expected to be of higher quality, more thoroughly tested, and provide more

functionality.

 39

There are many differences between the testing and quality assurance (QA) practices of

OSS projects and closed-source software projects. A survey performed by Bahamdain (2015)

found that OSS projects tend to employ informal and unstructured QA, risk assessment, and

testing practices. Additionally, they observed that there is little planning for the development

lifecycle of the project. The discovery of software defects happens late in the project’s

development, and empirical data regarding the software quality is often not gathered. In a large-

scale study of over 20,000 OSS projects, Kochhar et al. (2013) found that 38% of projects did

not contain any test cases, that 85% of projects had fewer than 100 test cases, and that projects

with test cases tended to be larger and have more contributors than those without test cases. They

also noted that a high number of test cases do not assure that a software product will be free of

defects.

General Software Testing Challenges

One challenge that software testers sometimes face is difficulty reproducing software

defects, leading to excessive time and effort spent debugging. Chaparro et al. (2019) addressed

low-quality steps for reproducing errors in user-written bug reports. The authors proposed Euler,

a method that analyzes the text of a bug report, identifies the steps to reproduce the defect,

evaluates the quality of these steps, and sends feedback regarding the quality to the reporters.

However, the proposed method was not tested in a real-world development environment. This

study complemented existing approaches for the generation of test cases from bug reports

(Fazzini et al., 2018; Karagöz & Sözer, 2017).

Automatic testing methods can reduce the resources needed for software testing, but they

also have limitations (Saddler & Cohen, 2017; Toffola et al., 2017; Zheng et al., 2013). Toffola

et al. (2017) noted that automatic test generation techniques frequently fail to provide relevant

 40

input values. The authors proposed and evaluated TestMiner, a method for mining a collection of

tests for appropriate input values for unit test generators. The proposed method was not

evaluated in a real-world software development environment. Related work described test

generators that can reason symbolically about expected input values, although this approach has

low scalability (Zheng et al., 2013). Saddler and Cohen (2017) addressed the ineffectiveness of

existing automated testing methods for GUI usability testing. The authors proposed

EventFlowSlicer, a highly scalable process that enables the GUI tester to create all the test cases

relevant to an objective. Swearngin et al. (2013) proposed a similar technique, but it has several

limitations, including low scalability.

Other challenges faced by software testers involve human and organizational factors

(Gonçalves et al., 2017; Majchrzak, 2010; Seth et al., 2014; Zhang, 2009). Gonçalves et al.

(2017) identified organizational, operational, and cognitive factors and how they can affect the

software testing process. The study results suggested that incompetent management, poor

infrastructure, excessive overtime, monotony, low employee self-esteem, stress, and lack of

training can negatively affect the software testing process. The authors also found that conflict

between testers and developers can adversely affect the software testing process, a finding shared

by Zhang (2009). The role of software testers within an organization is to validate and verify

developers' software. Due to the nature of their position, testers may become involved in an

interpersonal conflict with developers, which may lead to a reduction in the quality of the

software product and decreased job satisfaction. Zhang (2009) examined the impact of

interpersonal conflict and task conflict on software quality and job satisfaction. The study's

findings suggested that interpersonal conflict has a significant effect on both job satisfaction and

software quality and that task conflict affects software quality. Seth et al. (2014) found that

 41

software testers tend to be inadequately involved in software projects during the planning phase,

underestimating the resources required to test the software thoroughly. They also found that

project managers are often unwilling to spend significant resources on testing.

Furthermore, top-down organizational structures reduce the awareness of the importance

of software testing and quality assurance. Majchrzak (2010) studied the status quo, best

practices, and known problems relating to various software development organizations' software

development processes. The author developed a framework for categorizing software testing

recommendations, focusing on organizations' ability to implement these recommendations

successfully. The author’s recommendations include defining clear and distinct roles for

developers and testers, creating a testing department, performing requirements engineering, and

measuring testing performance.

Metamorphic Testing Methodologies

 The concept of MT was introduced over 20 years ago in a technical report (Chen et al.,

1998). It involves checking for the satisfaction of metamorphic relations (MRs) among a set of

software tests. These relations specify how a software program's output should change when the

program input changes in a specific way. The selection of MRs is a critical step when using MT.

Multiple MRs can be identified for a given problem, and it is useful for software testers to know

which ones are the most appropriate to use in each testing scenario. Cao et al. (2013) addressed

which MRs have the best chance of revealing software defects. The researchers looked at the

effectiveness of MRs at detecting software defects and the difference between the execution

profiles of the test cases. They found that the higher the difference between the initial execution

profile and the follow-up profile, the better the MR is at defect detection.

 42

Researchers have proposed various approaches for identifying MRs (Ding et al., 2016;

Kanewala, 2015; Lin et al., 2018; Zhou et al., 2016). Some approaches entail selecting MRs

independently of each other and checking their results separately (Ding et al., 2016; Zhou et al.,

2016). In contrast, Lin et al. (2018) introduced a hierarchy of MRs created incrementally. In this

approach, the results of one MR are employed to generate additional MRs to locate software

defects. The authors used a case study to demonstrate their testing method by applying it to

software system integration. The process was tested on only one program, which limits the

generalizability of the study results. Kanewala (2015) proposed a machine learning-based

approach to predict MRs at the function level automatically. This approach models the MR

identification problem as a binary classification problem and uses walk-based graph kernels to

enhance identification accuracy. The researcher validated their approach using 100 mathematical

functions that have only numerical input and output values.

Metamorphic Testing Frameworks

 In addition to specialized methodologies, researchers have developed frameworks to help

perform MT and identify useful MRs for the MT method (Chen et al., 2016; Murphy et al.,

2009). One such framework is the METamorphic Relation Identification based on the Category-

choice framework (METRIC) (Chen et al., 2016). The purpose of the METRIC is to identify a

set of useful MRs that adequately covers the code. The METRIC framework is a category-choice

framework that measures differences among test cases and the association of every MR with a

set of choices and categories. A category is defined as an input variable or condition that affects

the software during execution. A choice is defined as a partition of a category that includes

possible values for the category. A critical variable in the METRIC framework is the diversity

metric, which is defined as the difference between two test cases according to the number of

 43

distinct choices and categories to which the test cases are connected. One limitation of METRIC

is its reliance on tester expertise for MR identification.

Another framework for performing MT is the Amsterdam implementation framework

(Murphy et al., 2009). The purpose of the Amsterdam framework is to address the laboriousness

of employing MT for large input datasets or input that is not human-readable and the difficulty of

creating useful test input for MT. The testing can be performed without altering the source code.

The basis of this framework is the Automated Metamorphic System Testing approach. With this

approach, the software to be tested is a black box.

Furthermore, the application's metamorphic properties, which are specified by the tester,

should hold after the software completes its run if there are no defects in the code. A

metamorphic property is defined as an input transformation, program execution, or output

comparison specification. An input transformation specifies how to modify the data set. A

program execution specification includes execution commands and runtime options. An output

comparison is an expected output in relation to the original output. The program designer or

algorithm creator can specify these properties, but detailed knowledge of the source code is not

required to define them. With the Amsterdam framework, multiple invocations of the software

are executed, and their outputs are compared to assess whether the properties hold. One

weakness of the Amsterdam framework is its requirement that the tester specifies the MRs.

Acceptance of Metamorphic Testing

 The amount of literature relating to MT has increased over time, suggesting a sustained

growth in researcher interest and acceptance in MT (Chen et al., 2018; Segura et al., 2016). In a

survey of MT literature, Segura et al. (2016) found that the cumulative number of MT

publications from 1998 to 2015 fit well to a quadratic function with a determination coefficient

 44

of 0.997, indicating polynomial growth. The authors also found that 49% of the surveyed papers

focused on applying MT to over a dozen different problem domains, including Web applications,

computer graphics, modeling and simulation, embedded systems, encryption software, and

financial software. This finding indicates a strong acceptance of MT for solving different types

of problems. Similarly, Chen et al. (2018) noted the growing interest in MT by researchers and

the use of MT for detecting defects in real-world programs. However, to the best of the

researcher’s knowledge, no published studies have evaluated MT's acceptance among a

population of software developers or testers.

Metamorphic Testing Effectiveness

The findings of many studies indicate that MT is highly effective at detecting defects in

software even when conventional testing methods have failed (Cañizares et al., 2019; Ding et al.,

2016; Kanewala & Chen, 2018; Zhou & Sun, 2019). For example, over 100 defects were found

in popular C compilers and widely used protein function prediction tools using MT (Lidbury et

al., 2015; Shahri et al., 2019). In a survey of MT literature, Segura et al. (2016) reported that 295

real defects in 36 programs were detected with the help of MT. Also, MT discovered new faults

that had not been previously identified in the widely used Siemens test suite despite this suite

having been the subject of testing research for 20 years (Rao et al., 2013).

Zhou and Sun (2019) employed MT successfully to find defects in software used in

autonomous vehicles. They addressed the possibility that driverless cars' software systems could

incorrectly interpret the data provided by a sensor, which could cause fatal accidents. They

discussed the application of MT to these software systems. The authors argued that it is

challenging to test these software systems using conventional software testing approaches

because of the oracle problem and the need to carry out many tests to test the system thoroughly.

 45

Other challenges include creating system specifications that can be used to check the behavior of

autonomous vehicles, the complexity of verifying fuzz test results, and resource and time

constraints. The MT method could be a cost-effective alternative to testing such systems. The

authors detected severe defects in the light detection and ranging (LiDAR) obstacle perception

module of autonomous vehicles using MT. They also discovered errors in the Google Maps

service that calculates the optimal driving route between two locations.

Mutation testing has been employed to test MT's effectiveness (Cañizares et al., 2019;

Ding et al., 2016; Kanewala & Chen, 2018). Ding et al. (2016) proposed a framework for

developing MRs and tested their approach using ADDA, an open-source implementation of

discrete dipole approximation. The test coverage was calculated to be 100% for statements and

close to 100% for other conditions. The researchers used limited mutation testing to verify the

effectiveness of the MT tests. The study's limitations are that it was only applied to one software

program, which limits its generalizability, and that only one module of the ADDA software was

subjected to mutation testing. Kanewala and Chen (2018) explained why MT is preferable for

testers without a background in software development, such as the ease of learning and

implementing MT. The authors used MT to evaluate three programs using mutation testing. They

created mutants and recorded the number of mutants that the MRs were able to find. They found

that 90% of mutants were detected. Although these are promising results, they showed that 10%

of the mutants were not detected. Cañizares et al. (2019) proposed an expert system that employs

MT and simulation to verify a memory system's correctness. They conducted a one-shot pre-

experimental research study. The study's purpose was for the research team to evaluate the

effectiveness of their proposed expert system in terms of defect detection. A total of 25,000 test

cases were generated from a set of memory models and executed for the system with mutants

 46

added. The defect detection effectiveness of 10 MRs for each memory management algorithm

was recorded in terms of the percentage of test cases in which the added faults were not detected

when applying the given MR. These results were combined to determine the overall

effectiveness of the expert system. The researchers found that their testing approach was

effective at finding defects in the memory system and that certain combinations of MRs

increased the method's effectiveness. However, they also found that other MR combinations

performed worse than the individual MRs, and that accurate MR design was crucial to ensuring

the effectiveness of the proposed method.

Metamorphic Testing Challenges

 When applied appropriately, the MT method can be highly effective at detecting software

defects. However, there are challenges associated with using MT effectively and efficiently. One

problem is the lack of a standard method for describing MRs, which can make them challenging

to understand and use (Segura et al., 2017). There is high variability in the way MRs are

described, leading to miscommunications among researchers and practitioners. While there have

been proposed methods for formalizing MR descriptions, none have been widely adopted, which

may be due to some stakeholders finding them difficult to comprehend (Hui & Huang, 2013).

Furthermore, in a survey on MT research, Segura et al. (2016) found that important information

about the MRs was often left out of publications.

 Another major challenge associated with MT usage is knowing how to define, select, and

generate useful MRs and test cases, critical for performing MT effectively. Developing helpful

MRs requires knowledge of the problem domain, the properties of helpful MRs, and the

processes needed to construct them. Research relating to MR identification is preliminary, and

consistent and reliable guidance for identifying and creating helpful MRs is not present in the

 47

literature (Chen et al., 2018; Segura et al., 2016). Using all relevant MRs in testing can be

inefficient, so prioritizing MRs based on their effectiveness is an important task. The automated

generation of likely MRs is one potential solution to this challenge but approaches for MR

generation have been largely limited to numerical programs. Similarly, the production of useful

source test cases for MT use is essential since the test cases can affect the effectiveness of the

MRs (Chen et al., 2004; Chen et al., 2018; Wu et al., 2005).

 In addition to the challenges mentioned above, the MT method can be challenging to

implement because of a lack of MT tools. In a survey of 119 MT research papers, Segura et al.

(2016) found that only two of them proposed a tool as a primary contribution to the literature.

The applicability of these tools is limited to specific problem domains. The authors stated that

publicly available and well-maintained MT tools do not exist and that this limitation hinders the

widespread adoption of MT.

Synthesis of the Research Findings

Testing scientific software is critical in ensuring its precision and accuracy. One

challenge involved in scientific software quality assurance is differences in software

development practices between scientists and professional software developers (Ober & Ober,

2017). Scientist-developers tend to focus on the short-term goal of developing a program to meet

immediate research needs at the expense of making the software robust and maintainable (Morris

& Segal, 2009; Riesch et al., 2020). Software development methodologies have been developed

to help create more robust and higher-quality software products, such as test-driven development

(TDD) (Nanthaamornphong & Carver, 2018; Rilee & Clune, 2014). Software development

practices and methodologies could affect a software tester’s decision to use MT in their software

development projects and how often to use it throughout the lifecycle of the software.

 48

Testing a scientific software program poses a unique set of challenges, including the

oracle problem, code complexity, and numerical approximations (Chen et al., 2018; Ding et al.,

2016). The literature suggests that MT appears to be the most promising solution to testing

without oracles (Chen et al., 2018; Ding et al., 2016; Kanewala & Bieman, 2014). Studies have

shown MT to be useful for defect detection in a variety of problem domains, even in software

that has already been thoroughly tested using other methods (Cañizares et al., 2019; Ding et al.,

2016; Kanewala & Chen, 2018; Lidbury et al., 2015; Rao et al., 2013; Segura et al., 2016; Shahri

et al., 2019; Zhou & Sun, 2019). For this reason, testers may decide to use MT for non-scientific

software and software that does not have the oracle problem.

Although MT's basic concept is simple to understand and often easy to implement once

MRs are selected, developing and prioritizing MRs can be difficult. Furthermore, the current

literature does not provide consistent guidance for constructing MRs (Chen et al., 2018; Segura

et al., 2016). Methodologies and frameworks have been developed to help MT users. Still, they

have limitations such as relying on tester expertise, requiring that MRs be chosen by the tester,

not being well-validated on a variety of software programs, or being designed only for a specific

problem domain (Chen et al., 2016; Murphy et al., 2009). Also, there are very few MT tools,

which means that MT users will usually develop their own (Segura et al., 2016). These

challenges could reduce the perceived ease of use of the MT method. Although researcher

interest and acceptance in MT is growing, MT researchers have stated that MT has not been

widely adopted by practitioners (Chen et al., 2018; Segura et al., 2016). A study in which the

research team assesses MT's acceptance and usage among a population of software developers

has not been conducted to the best of this researcher’s knowledge. The effectiveness of MT and

the challenges associated with using it may play a role in a user's decision to adopt and use the

 49

MT method for testing their software. This study's objective was to provide information that

helps researchers understand the relationships between these factors better.

In this study, the researcher employed the UTAUT as the theoretical framework. The

UTAUT is one of the most popular models among researchers for predicting technology use and

acceptance (Al-Mamary et al., 2015). The UTAUT has not been applied to software testing

methods to the best of this researcher’s knowledge, but it has been used for studying processes

and practices for software development (Anderson, 2019; Guardado, 2012). An objective of

formulating UTAUT was to help researchers and industry leaders understand the factors

underlying technology acceptance better so that effective interventions for improving technology

usage can be designed. This objective aligns with that of this study.

Often, researchers who use UTAUT as a theoretical framework employ quantitative

methodology with a correlational or regression research design (Almaiah et al., 2019;

Alrawashdeh et al., 2019; García et al., 2019; Gunawan, 2018; Xiang & Wu, 2018). A review of

mobile payment service adoption studies that applied UTAUT found that survey questionnaires

were used to collect data in 80% of the studies (Al-Saedi et al., 2019). For this reason, the

researcher employed a quantitative methodology with a correlational research design, and data

were collected using a survey instrument.

 In this study, the researcher examined the relationships between the UTAUT constructs

of performance expectancy (PE) and effort expectancy (EE) and MT's acceptance and usage. The

PE construct represents the degree to which the technology user believes that the new technology

will help improve their job performance or result in other favored outcomes (Compeau et al.,

1999; Davis, 1989; Davis et al., 1992; Moore & Benbasat, 1991; Thompson et al., 1991).

Venkatesh et al. (2003) found that PE was the strongest predictor of a user’s intention to use a

 50

new technology, which is why the study included this construct. The EE construct encompasses

the user’s perceived ease of use and the ease of learning and understanding the new technology

(Davis, 1989; Moore & Benbasat, 1991; Thompson et al., 1991). Concerning PE, many

publications suggest that MT is highly effective at detecting software defects, which could

improve job-related outcomes for software developers and testers (Cañizares et al., 2019; Ding et

al., 2016; Kanewala & Chen, 2018; Lidbury et al., 2015; Rao et al., 2013; Segura et al., 2016;

Shahri et al., 2019; Zhou & Sun, 2019). However, the literature also notes the existence of

challenges associated with using MT successfully. Because the researcher is interested in the role

these challenges play in MT's acceptance and use, the EE construct was included in this study.

Critique of the Previous Research Methods

The number of studies that report the findings of real programs being tested using MT

has been growing, indicating an increasing acceptance of MT for software testing (Chen et al.,

2018; Segura et al., 2016). However, comprehensive surveys of MT studies suggest a lack of

understanding of MT's effectiveness for detecting defects in large, complex programs and across

a wide variety of application domains (Chen et al., 2018; Segura et al., 2016). While studies have

been performed to assess MT's effectiveness, the majority of these studies have only tested a set

of small to medium-sized programs or software from a single application domain (Chen et al.,

2018; Liu et al., 2014). To effectively assess the effectiveness of MT, a body of literature that

contains the findings of empirical studies relating to their fault detection effectiveness is required

(Chen et al., 2018; Segura et al., 2016). Comprehensive MT studies that include large, diverse

sets of programs and datasets are lacking in the literature. Regarding this study, this limitation

may cause some software developers not to adopt MT because they are not convinced of its

effectiveness or applicability to their software projects.

 51

Researchers have proposed a variety of approaches for automating MT and hence making

MT easier to use for software developers and testers. However, the scope of many studies that

examined the effectiveness of MT methodologies and frameworks was limited to a small sample

of programs or datasets or a single problem domain. For example, Ding et al. (2016) proposed a

framework for developing MRs, but they validated it using only one scientific software program.

Lin et al. (2018) introduced a hierarchy of MRs created incrementally and applied their method

to program integration, but they tested it using only one dataset. Similarly, Kanewala and Chen

(2018) used MT to evaluate only three programs; Kanewala (2015) proposed an approach for the

automatic prediction of MRs at the function level and evaluated it on a set of mathematical

functions that had only numerical input and output. Cañizares et al. (2019) proposed an expert

system that employs MT to verify a memory system's correctness. One strength of this study is

that the authors used a large sample of 25,000 test cases. However, the effectiveness of the

system was examined for only four memory management algorithms. This weakness limits the

generalizability of the study results to other programs and other types of software. This limitation

implies that software developers may decide not to adopt MT due to difficulty locating an

existing approach appropriate for use with their software projects. Also, the participants may find

MT overly challenging to learn and use effectively.

The theoretical framework that was used in this study, UTAUT, has many strengths and

some weaknesses. One significant advantage of UTAUT is that it has been shown to outperform

eight older models, including the widely used technology acceptance model (TAM), in

explaining the variance in employee intentions to use new technology (Davis, 1986; Davis et al.,

1989; Venkatesh et al., 2003). Venkatesh et al. (2003) developed UTAUT using a rigorous

methodology that involved a within-subjects longitudinal comparison, empirical validation, and

 52

cross-validation. Also, reviews of UTAUT studies found that the theory's quality, robustness,

and validity is high (Venkatesh et al., 2016; Walldén et al., 2016). On the other hand, the

UTAUT has been criticized for weaknesses associated with its constructs of facilitating

conditions (FC) and behavioral intention (BI). These constructs exclude external behavioral

determinants that can change over time, such as user ability and environmental factors

(Venkatesh et al., 2008). In their meta-analysis, Dwivedi et al. (2017) suggested that attitude

should be included as a mediating construct in UTAUT. However, these weaknesses are not

highly relevant to the objectives of the study. The study was cross-sectional, and its main aim

was to examine the relationships between the constructs of PE and EE and the acceptance and

usage of MT. The researcher selected UTAUT as the theoretical basis for the study because it

has been widely used and validated and has been shown to outperform other technology

acceptance models.

Summary

Quality assurance (QA) is a critical component of the software development lifecycle. In

contrast to closed-source projects, open-source software projects tend to use informal and

unstructured QA and testing practices. Testing and QA are essential because the presence of

undetected defects in software can have severe consequences. For scientific software used for

research purposes, errors can lead to inaccurate research results and retractions of publications

based on those results. Testing scientific software presents a unique set of challenges, such as the

oracle problem and cultural differences between scientist-developers and professional software

developers. Software development methodologies and testing methods have been developed to

address these challenges. The MT method is a testing method that has often been employed to

handle the oracle problem and detect defects that conventional testing methods cannot find.

 53

However, studies on MT effectiveness have been limited to small or medium programs or a

specific domain.

Furthermore, using MT effectively can be difficult due to a lack of tools and unclear

guidance for selecting appropriate MRs, which is critical in the MT method. The perceived

effectiveness of MT and the challenges associated with using this method may play a role in a

software developer’s decision to accept and use it. The QA practices employed by the

developer’s team may also affect their decision to use MT.

The UTAUT is a widely used theoretical framework for studying the acceptance and

usage of technology. This theory has been employed in research studies to examine the

acceptance of various technologies, including software development and management processes

and practices. Still, it has not been applied to software testing methods. Although the literature

indicates that researcher interest in MT has been increasing over time, no published studies have

examined MT's acceptance and usage among practitioners to the best of the researcher’s

knowledge. This study addressed these gaps in the literature by applying UTAUT to explore the

relationships between UTAUT constructs and MT's use and acceptance.

 54

Chapter 3: Research Method

 Quality assurance is a critical component of the software development life cycle. Testing

software is essential to ensure the precision and accuracy of its output. One problem commonly

encountered when testing scientific software is the oracle problem: the lack of a test oracle for

output comparison (Chen et al., 2018). Detecting all defects in a software product is another

major challenge. Metamorphic testing (MT) addresses the oracle problem and can improve

defect detection. However, there are challenges associated with MT's use, such as difficulties in

selecting good metamorphic relations (MRs) and developing effective test cases. These issues

could affect a software developer's decision regarding the use of MT to test their programs.

The problem that was addressed by this study was the inadequacy of software testing

methods to detect all software defects, which could be mitigated by the use of the MT method

(Lidbury et al., 2015; Rao et al., 2013). The MT method has been able to find defects in widely

used and well-tested software programs that were not found previously using other testing

methods. For example, over 100 defects were found in popular C compilers and widely used

protein function prediction tools using MT (Lidbury et al., 2015; Shahri et al., 2019). Another

example of the problem is the detection of new defects that had not been previously found in the

widely used Siemens test suite despite this suite being the subject of testing research for 20 years

(Rao et al., 2013). The problem is significant because defects in software can have severe

consequences for users. These consequences include poor software performance, reduced

precision or accuracy of software output, and retractions of research publications for which

defective software was used (Kanewala & Chen, 2018). One significant defect in software used

for scientific research led to the retraction of five research articles, one of which was highly cited

by other researchers (Miller, 2006). Detecting software defects can be challenging due to various

 55

factors such as the oracle problem, code complexity, and constraints on time and resources (Chen

et al., 2018; Ding et al., 2016; Zhou & Sun, 2019).

The purpose of this quantitative correlational study was to address the problem of the

inadequacy of software testing methods for detecting all defects by enabling the researcher to

examine relationships between MT’s use and acceptance among open-source developers and the

constructs of performance expectancy (PE) and effort expectancy (EE). Another objective of the

study was for the researcher to understand how the variables of age, gender, and experience

moderate these relationships. The study purpose aligns with the research problem because the

MT method has been found to detect software defects that other testing methods failed at finding

(Lidbury et al., 2015; Rao et al., 2013; Shahri et al., 2019). An improved understanding of the

factors associated with the acceptance and use of MT could help develop interventions to

increase MT usage and hence reduce the number of software defects. Furthermore, this study's

results are useful for assessing the applicability of the unified theory of acceptance and use of

technology (UTAUT) to the acceptance and use of software testing methods.

For this study, the researcher employed a quantitative methodology with a correlational

research design. In this chapter, the researcher discusses the research methodology's

appropriateness and design, describes the sample and population of interest, outlines the

sampling procedure, describes the research instrument used to collect data, and provides the

variables' operational definitions. Then, the assumptions, limitations, and delimitations of the

study are listed. Finally, ethical considerations for the study are discussed.

Research Methodology and Design

In this study, the author applied a quantitative methodology, which is suitable for

validating existing theories, testing hypotheses, and measuring known constructs (Choy, 2014;

 56

Creswell, 2014). Quantitative research methods align with the study’s purpose, including

applying a current theoretical framework to software testing methods and measuring known

variables. Quantitative research is ideal for answering the study research questions, which pertain

to relationships among known variables and theoretical constructs. Furthermore, the research

questions were addressed using hypothesis testing, which falls under quantitative methodology.

A correlational research design was used to carry out the study. A correlational design

was the most appropriate research design for this study because the purpose of the study was to

examine relationships among variables (Creswell, 2014). These variables are the acceptance and

usage of MT and two UTAUT constructs, namely performance expectancy (PE) and effort

expectancy (EE) (Venkatesh et al., 2003). Furthermore, the research questions for the study

relate to these relationships. The study design was appropriate for addressing the inadequacy of

conventional software testing methods for defect detection by examining the correlation between

MT’s use and acceptance and factors that could significantly impact the MT method's use and

acceptance.

A cross-sectional survey method was used to measure the theoretical constructs and

variables of interest. A survey method was appropriate for this study because answering the

research questions required measuring the study participants' opinions, perceptions, and

intentions in the form of UTAUT constructs (Creswell, 2014; Venkatesh et al., 2003). Due to its

cost-effectiveness and high accessibility to the target population, an online survey instrument

was used to collect the sample data.

Other research designs and methodologies were less suitable for this study. A descriptive

design was not the most appropriate research design for this study since the study objective was

not limited to gathering information about the population (Shields & Rangarajan, 2013).

 57

Experimental and quasi-experimental designs were not appropriate for this study because the

study did not involve administering a treatment or intervention and observing its effects

(Creswell, 2014). A comparative design was not suitable since comparisons among multiple

groups were not performed (Salkind, 2010). Longitudinal designs were not ideal for this study

because the researcher gathered data at only one point in time (Salkind, 2010). Finally, the

researcher preferred quantitative research methodology to qualitative methodology because the

study's objective was to measure a set of constructs and analyze the relationships among them,

which is more suited to quantitative methodology (Creswell, 2014).

Population and Sample

The study's target population consisted of GitHub users who have contributed to any of

the public GitHub repositories contained in the “Software in science” collection on the GitHub

Web site (GitHub, Inc., 2020a). This collection consists of repositories that host scientific

software programs for research purposes and software libraries for mathematics and algorithms,

a command shell, a package manager, a client for accessing scientific journal articles, and data

processing tools. Also, the respondents were required to be at least 18 years of age and to speak

English fluently for inclusion in the study. The size of the target population was approximately

4,500 contributors. The overall population consists of all contributors to open-source software

projects hosted on GitHub. The overall population size can be estimated via the number of

GitHub users, which is approximately 50 million, although not all GitHub user accounts are

active (GitHub, Inc., 2020b). Based on the study problem and purpose, it was appropriate to

specify the target population as the contributors to a collection of open-source projects

containing scientific software and software in other problem domains.

 58

Stratified sampling was used to obtain the study sample. In this sampling method, the

target population is divided into strata, and study participants are recruited from each stratum

(Oxford University Press, 2020). The sample consisted of respondents from a set of 700 potential

participants who have contributed to the repositories in the GitHub “Software in science”

collection. The potential respondents had to have an e-mail address either listed on their GitHub

user page or obtainable via the GitHub API. The potential respondents were selected from the

100 most active contributors to each repository in the collection. This sampling method ensured

that all software projects in the collection were represented in the set of potential participants.

The sample was appropriate because the study problem applies to a variety of software types.

Furthermore, the study purpose and research questions pertain to open-source software

developers in general rather than only those who contribute to one specific project or type of

project.

A sample size of 41 participants was obtained for this study. Power analysis for a two-

tailed bivariate normal correlation test was performed using the G*Power 3.1.9.4 software

program (Faul et al., 2007). It was determined that the minimum correlation coefficient that the

study could detect was 0.42. In this power analysis, the sample size was 41, the statistical power

was 0.8, and the significance level was 0.05. Since the researcher employed a correlational

design with a single sample, one group was included in the analysis.

The study participants were recruited by sending each of the potential participants a

recruitment e-mail using the e-mail address listed on their GitHub user page. This e-mail

contained information about the study and researcher, participant eligibility criteria, and a link to

the survey. Based on a published study in which GitHub contributors were surveyed, the

expected response rate was approximately 24% (Kalliamvakou et al., 2016). Given this response

 59

rate, the recruitment e-mail was sent to 700 potential participants to ensure an adequate sample

size.

Instrumentation

The survey instrument published by Venkatesh et al. (2003), with minor rewording to

clarify that the questions pertain to the MT method, was used to measure the relevant constructs

and variables. A sample research instrument is provided in Appendix A. The constructs of

performance expectancy (PE), effort expectancy (EE), and behavioral intention (BI), which is a

measure of technology acceptance, were measured using this instrument. The frequency of use

(FoU) as well as the UTAUT moderating variables of age, gender, and experience were also

measured in the survey (Venkatesh et al., 2003; Venkatesh et al., 2012). The research instrument

aligns with the study’s quantitative methodology in that all constructs are measured using

numerical Likert scales.

Furthermore, the variables of age and experience were measured numerically. Gender is

at the nominal level of measurement; gender items were assigned numerical values for data

analysis. The UTAUT moderating variable of voluntariness of use was not included because

previous research suggests that this variable does not moderate the relationships between the PE,

the EE, and the acceptance and usage of technology (Venkatesh et al., 2003).

The developers of UTAUT created and employed the survey instrument in their field

studies to collect data from employees on the UTAUT constructs and moderating variables

(Venkatesh et al., 2003). These field studies were conducted at six organizations in various

industries in which participants were introduced to new technologies in their work environment.

These field studies aimed to validate UTAUT and compare its performance to other technology

acceptance models.

 60

Venkatesh et al. (2003) used partial least squares to verify the reliability and validity of

the measures used in their survey instrument. They performed 48 validity tests across two studies

and three time periods to assess the instrument's discriminant validity and convergent validity.

They found that all internal consistency reliability values were higher than 0.70. They

determined that the loading pattern was acceptable as most of the loadings were at least 0.70.

Furthermore, they observed high intra-construct survey item correlations and low inter-construct

item correlations.

Operational Definitions of Variables

The theoretical constructs and variables outlined in this section were measured in this

study. An independent variable explains the outcome of one or more dependent variables

(Creswell, 2014). A dependent variable depends on one or more independent variables. A

moderating variable affects the relationship between an independent variable and a dependent

variable.

Performance Expectancy (PE)

The PE is an independent variable. It is a UTAUT construct that is defined as the extent

to which the user believes that the new technology will help improve their job performance or

result in other favored outcomes (Compeau et al., 1999; Davis, 1989; Davis et al., 1992; Moore

& Benbasat, 1991; Thompson et al., 1991; Venkatesh et al., 2003). The PE was used as an

independent variable in the Spearman correlation tests.

The PE construct was measured by summing the four survey items adapted from the

instrument published by Venkatesh et al. (2003). These items are as follows: “I would find the

method useful in my job,” “Using the method enables me to accomplish tasks more quickly,”

“Using the method increases my productivity,” and “If I use the method, I will increase my

 61

chances of getting a raise.” Like the instrument used by Venkatesh et al. (2003), each item was

measured using an ordinal scale, namely a seven-point Likert scale with possible values being

integers in the range [1-7]. On this scale, a one represents “Strongly disagree,” four means

“Neither agree nor disagree,” and a seven represents “Strongly agree.” The total possible score

for the PE construct was an integer in the range [4-28].

Effort Expectancy (EE)

The EE is an independent variable. It is a UTAUT construct that represents the user’s

perceived ease of use of new technology and the ease of learning and understanding it (Davis,

1989; Moore & Benbasat, 1991; Thompson et al., 1991). The EE was used as an independent

variable in Spearman correlation tests. The EE construct was measured by summing the four

survey items adapted from the instrument published by Venkatesh et al. (2003). These items are

as follows: “The method is clear and understandable,” “It would be easy for me to become

skillful at using the method,” “I would find the method easy to use,” and “Learning to use the

method is easy for me.” Like the instrument used by Venkatesh et al. (2003), each item was

measured using an ordinal scale, namely a seven-point Likert scale with possible values being

integers in the range [1-7]. On this scale, a one represents “Strongly disagree,” four means

“Neither agree nor disagree,” and a seven represents “Strongly agree.” The total possible score

for the EE construct was an integer in the range [4-28].

Behavioral Intention (BI)

The BI is a dependent variable. It is a UTAUT construct defined as the user’s intention to

use the new technology within a specified number of months (Venkatesh et al., 2003). The BI is

a measure of user acceptance of new technology. This construct was used as a dependent

variable in the Spearman correlation tests. The BI construct was measured by summing the

 62

measurements of three survey items adapted from the instrument published by Venkatesh et al.

(2003). These items are as follows: “I intend to use the method in the next 12 months,” “I predict

I would use the method in the next 12 months,” and “I plan to use the method in the next 12

months.” Like the instrument used by Venkatesh et al. (2003), each item was measured using an

ordinal scale, namely a seven-point Likert scale with possible values being integers in the range

[1-7]. On this scale, a one represents “Strongly disagree,” four means “Neither agree nor

disagree,” and a seven represents “Strongly agree.” The total possible score for the BI construct

was an integer in the range [3-21].

Frequency of Use (FoU)

The FoU is a dependent variable that represents how often the user uses the new

technology. The original UTAUT model developers measured technology usage via system logs

rather than including a relevant item in their research questionnaire (Venkatesh et al., 2003).

Since using system logs was infeasible for this study, the survey instrument included a question

that asked the participant about their usage frequency, like the survey used by Venkatesh et al.

(2012). The FoU was used as a dependent variable in the Spearman correlation tests.

The FoU was measured using a single survey item with a seven-point Likert scale. The

item is, “Please choose your usage frequency for the metamorphic testing method.” Like the

instrument used by Venkatesh et al. (2012), each item was measured using an ordinal scale,

namely a seven-point Likert scale with possible values being integers in the range [1-7]. On this

scale, a one represents “Never,” a four represents “Sometimes, in about 50% of the chances

when I could have,” and a seven represents “Every time” (Vagias, 2006).

Age

 63

The user’s age is a moderating variable that affects UTAUT constructs (Venkatesh et al.,

2003). The user’s age was used as a moderating variable in the Spearman correlation tests. Age

is at the ratio level of measurement. This variable was operationalized as a continuous variable

that measures the user’s age in years (Morris & Venkatesh, 2000). A single survey item was used

to collect age data from participants. This item was, “Please enter your age in years.” Since

participants in the study had to be at least 18 years of age, the possible score for the age variable

was an integer in the range [18-120]. Respondents were given the option of “Prefer not to

answer.”

Gender

The user’s gender is a moderating variable that affects UTAUT constructs (Venkatesh et

al., 2003). The user’s gender was used as a moderating variable in the Spearman correlation

tests. Gender is at the nominal level of measurement. A single multiple-choice survey item was

used to collect gender data from participants. This item is “Please select your gender.” The

possible choices were “Male,” “Female,” “Other,” and “Prefer not to answer.”

Experience

User experience with the new technology is a moderating variable that affects UTAUT

constructs (Venkatesh et al., 2003). The user’s experience was used as a moderating variable in

the Spearman correlation tests. The relevant survey item is, “Please choose your level of

experience with the metamorphic testing method.” Like the instrument used by Kim et al.

(2005), each item was measured using an ordinal scale, namely a five-point Likert scale with

possible values being integers in the range [1-5]. On this scale, a one represents “less than six

months,” a three represents “one to three years,” and a five represents “seven years or more.”

 64

Study Procedures

In this cross-sectional study, the researcher employed an online survey to collect all

relevant data from the study participants. The survey instrument is a slightly modified version of

the instrument designed by Venkatesh et al. (2003). The instrument designers verified the

reliability and validity of the instrument for collecting data on the UTAUT constructs.

First, the researcher created a list of potential study participants by collecting the e-mail

addresses from the 100 most active contributors to each repository in the GitHub “Software in

science” collection who had publicly listed e-mail addresses. The number of contributors

recruited from each project depended on the number of contributors whose e-mail addresses

were either accessible on their GitHub user Web page or via the GitHub API. The list of

repositories in the collection and the number of potential participants recruited from among the

contributors to each project is presented in Table 1. This method is like the population selection

method used by Kalliamvakou et al. (2016). The other inclusion criteria, namely that the

participants were at least 18 years of age and spoke English fluently, were listed in the

recruitment e-mail that the researcher sent each potential participant. Also, the first page of the

research instrument contained a letter of informed consent that listed the eligibility criteria for

the study and required the potential participant to agree to the information in the letter before

proceeding to the actual survey. In total, the researcher selected 700 contributors for recruitment

based on GitHub users' response rate obtained by Kalliamvakou et al. (2016). The researcher

stored the list of e-mail addresses for the final set of 700 potential participants in a spreadsheet

file.

 65

Table 1

Number of Potential Participants Recruited from Each Repository

Name of Repository Number of Potential Participants

simbody/simbody 17

cms-sw/cmssw 77

ComputationalRadiationPhysics/picongpu 13

psas/av3-fc

astropy/astropy

dfm/emcee

cyverse/atmosphere

dib-lab/khmer

sympy/sympy

spack/spack

ipython/ipython

ropensci/rplos

sagemath/sage

gap-system/gap

Singular/Singular

fredrik-johansson/arb

broadinstitute/picard

markusschanta/awesome-jupyter

3

88

21

11

32

83

91

84

4

62

19

22

11

46

16

Next, the researcher recruited the study participants by sending each of the potential

participants a recruitment e-mail. This e-mail contained information about the study and

researcher, participant eligibility criteria, participant activities and time commitments,

instructions for participation, and a link to the survey (Dembsey, 2020). The respondent was

invited to click on the link if they were interested in participating and eligible to participate in the

study. If a respondent clicked on the survey link, they were taken to a Web page that contains a

 66

Qualtrics survey. The first page of this survey provided a letter of informed consent and a

multiple-choice question at the end of the letter that asked the respondent whether they agreed to

participate in the study. The respondent had to select “Yes, I agree” and click the Next button to

access the survey.

The survey included items to measure all relevant variables and UTAUT constructs

(Venkatesh et al., 2003). The first, second, and third pages of the survey provided the items that

measured the PE, the EE, and the BI, respectively (Anderson, 2019). The fourth page contained

items that measured the FoU and experience. The items that measured the participant’s age and

gender were on the fifth page. A progress bar at the bottom of the page displayed the percentage

of the survey completed. When the participant finished the survey, a new page thanked them for

their time and participation.

The data collection period was divided into two phases, each of which was two weeks

long. The researcher selected this time period based on research that found over 90% of survey

responses occur within two weeks (Phillips et al., 2016). The researcher sent recruitment e-mails

to a set of 350 potential participants at the beginning of each phase. A reminder e-mail was

automatically sent via Qualtrics to nonrespondents after one week. Since the desired sample size

was not reached by the end of the first two-week collection phase, the second set of 350 potential

participants was recruited from the GitHub contributors to the “Software in science” collection.

Data Analysis

The data was collected using an online Qualtrics survey (see Appendix A for an example

survey) and imported into IBM SPSS Statistics Version 26 for analysis. The study hypotheses

were tested by performing Spearman correlation analyses to measure the relationships among

variables. The researcher began the analysis by creating scatterplots for the following variable

 67

pairs and visually inspecting them for monotonicity: BI vs. PE, BI vs. EE, FoU vs. PE, and FoU

vs. EE (Lund Research Ltd, 2018c). The PE and EE were the independent variables, and the BI

and FoU were the dependent variables in the data analysis. All of the relationships between

variable pairs were monotonic.

The researcher performed Spearman correlation analyses using IBM SPSS Statistics 26.

The sample size, the Spearman rank-order correlation coefficient, the degrees of freedom, and

the p-value were obtained (Corder & Foreman, 2014). The p-value indicates the statistical

significance of the correlation. The hypotheses were tested by determining whether statistically

significant relationships exist between the BI and PE, the BI and EE, the FoU and PE, and the

FoU and EE. Also, the effects of the moderating variables, namely age, gender, and experience,

on the relationships between the independent and dependent variables were tested using

moderated multiple regression. In moderated regression, interaction terms between a moderating

variable and an independent variable are added to the regression equation to test whether any of

the interactions are statistically significant (Lund Research Ltd, 2018b).

Finally, the researcher performed a wave analysis to check for nonresponse bias. The

study participants were divided into two waves: the first wave consisted of those who completed

the survey before the reminder e-mail was sent. The second wave consisted of those who

completed the survey after the reminder e-mail was sent. In wave analysis, which is a widely

used method for assessing nonresponse bias, the final wave’s responses are compared to the first

wave's responses (Phillips et al., 2016). The late respondents are used as proxies for

nonrespondents, and the early respondents are treated as true respondents. The nonresponse bias

is obtained by multiplying the proportion of nonrespondents by the difference in the two sets of

responses.

 68

Assumptions

The researcher assumed that the research instrument is valid and reliable because the

reliability and validity of its measures have been verified by Venkatesh et al. (2003). The study

participants were assumed to respond to the survey items honestly and accurately. The possibility

of incorrect responses was mitigated by using a validated survey instrument and providing the

participants with clear instructions regarding taking the survey. The participants were assumed to

be familiar with MT's basic concept since a definition of MT was provided in the recruitment e-

mail. Finally, all participants were believed to be eligible to participate in the study, as the

eligibility criteria were clearly stated in the recruitment e-mail.

Limitations

One limitation of the study is that not all potential participants recruited for the study

participated, resulting in nonresponse bias. This limitation was mitigated by performing wave

analysis to estimate the nonresponse bias. Another limitation was that the study data was

subjective because it only came from self-reported survey answers, which means the researcher

could not verify the responses' accuracy. Furthermore, the study's correlational research design

means that causal relationships between constructs and variables cannot be inferred from the

study findings. Also, the study's quantitative methodology limited the collected data to the

specified variables and constructs of interest. Future studies could incorporate qualitative

methods to explore other possible factors about the study problem and purpose. On a related

note, the construct of BI only measures the participants’ intention to use new technology within a

specific period. It does not consider participants who plan to use it in the more distant future.

Another study limitation was the sampling method, in which only a subset of contributors

from a subset of all OSS projects was recruited for the study. This limitation implies that the

 69

study findings may not be generalizable to all OSS developers. This limitation was mitigated by

sampling from an OSS project collection that includes 18 diverse software projects. Future

research could further reduce this limitation by sampling from more software projects across

various problem domains.

Delimitations

The UTAUT was selected as the theoretical framework for this study because it is a

widely used model among researchers to predict technology use and acceptance (Al-Mamary et

al., 2015). Furthermore, researchers have found that the quality of the UTAUT is high and that it

is robust and valid (Venkatesh et al., 2016; Walldén et al., 2016). Thus, the variables and

constructs included in this study were drawn from the UTAUT.

The researcher limited the independent variables of interest to the UTAUT constructs of

PE and EE. The PE was included because Venkatesh et al. (2003) found that it was the BI's

strongest predictor. The BI construct operationalized the acceptance of MT in this study. The

literature notes the existence of challenges associated with using MT effectively (Chen et al.,

2018; Segura et al., 2016; Segura et al., 2017). The EE construct, which represents the ease of

using new technology, was included because the researcher was interested in the role these

challenges play in MT's acceptance. The dependent variables of interest were limited to the BI

and FoU, as these two variables represent MT's acceptance and use, respectively. The variables

selected for inclusion in this study align with the research questions.

The researcher limited the study sample to English-speaking participants at least 18 years

of age who have contributed to an OSS project in the “Software in science” collection on the

GitHub Web site. This collection includes software used for scientific research and other projects

that are useful to scientists. The researcher selected this delimitation because the study purpose

 70

and research questions are about examining MT's acceptance and usage, which is especially

helpful in handling the oracle problem (Chen et al., 2018). Furthermore, the study problem is the

inadequacy of conventional software testing methods for defect detection, and the oracle

problem is a common obstacle to defect detection in scientific software (Kanewala & Bieman,

2014). The researcher also opted to limit the set of potential participants to the most active

contributors to each project to maximize the number of core contributors included in the sample.

The literature suggests that core contributors tend to be more active contributors and more

involved in guiding the development and maintenance of OSS projects than non-core

contributors (Mockus et al., 2002; Nakakoji et al., 2002; Yamashita et al., 2015). Therefore, core

contributors are more likely to make decisions regarding software testing.

Ethical Assurances

The study received approval from Northcentral University’s Institutional Review Board

(IRB) before data collection (see Appendix B for the approval letter). The informed consent

guideline was followed by providing a letter of informed consent on the first page of the online

research instrument (see Appendix A). The researcher has obtained permission from the

publisher to use the research instrument in this dissertation (see Appendix C for the license). The

informed consent letter contained information regarding the study and researcher, participant

eligibility criteria, participant activities and time commitment required, risks and possible

benefits, privacy, data protection, how the researcher will use the results, and contact

information. The letter also stated that answering demographic questions is optional and that

participation in the study is voluntary. Furthermore, a recruitment e-mail was sent to potential

participants that clearly stated that research participation is being solicited and that participation

in the research study is voluntary. This e-mail also contained information about the study.

 71

Possible risks associated with this study include minor physical discomforts related to

taking an online survey. The participant could decrease the impact of these risks by ending

participation at any time by closing their Web browser. The informed consent letter contained

instructions on how to end involvement in the study. The researcher did not have undue

influence over the study participants, as no personal or professional relationship existed between

the researcher and any potential participants. The researcher did not offer any rewards for

participation in the study. Participants had to be at least 18 years of age.

The privacy of participants and the protection of their data was ensured by using a

Qualtrics survey to collect data. According to Qualtrics’ security statement, Qualtrics’ servers are

protected by firewalls and are tested for vulnerabilities regularly (Qualtrics, 2020). Access to

Qualtrics’ systems is monitored and restricted to individuals with a need-to-know. Qualtrics

anonymizes all survey responses and uses Transport Layer Security (TLS) encryption for data

transmission. Independently audited data centers host Qualtrics services. Also, Qualtrics has ISO

27001 certification and is FedRamp authorized (Qualtrics, 2020).

To further protect participant privacy, the e-mail addresses of potential participants were

obtained only from public Web pages and stored in a spreadsheet file on a password-protected

laptop computer accessible only to the researcher. The researcher erased this file from the

computer upon study closure. The survey instrument did not collect any personally identifiable

information. Two survey items gathered potentially sensitive demographic information on age

and gender. Still, the respondent could choose “Prefer not to answer” for these items and

continue the survey. Research data are stored on a password-protected laptop computer

accessible only to the researcher for three years from the date of study closure. Then, the

researcher will erase it from the computer. Participants will not be identified in any publications

 72

or presentations that present the study findings. Research data will be grouped in any

publications or presentations.

Summary

In this study, the researcher used a quantitative methodology with a correlational research

design and employed UTAUT as its guiding theoretical framework. The researcher addressed the

inadequacy of conventional software testing methods for defect detection by examining the MT

method's use and acceptance among a population of GitHub contributors. The data were

collected using an online survey. The primary variables of interest were the PE, the EE, the BI,

and the FoU. The researcher performed Spearman correlation tests to measure the relationships

between variable pairs. The moderating variables of age, gender, and experience were also

included in this study. The researcher performed moderator analyses to assess each moderator's

effect on the relationships between the variable pairs.

 73

Chapter 4: Findings

The purpose of this quantitative correlational study was for the researcher to examine the

relationships between the UTAUT constructs of PE and EE and the use and acceptance of the

metamorphic testing (MT) method among open-source software developers. Another objective

of the study was to understand how the variables of age, gender, and experience moderate these

relationships. An improved understanding of the factors associated with MT’s acceptance and

use could help researchers and practitioners design interventions to increase MT usage and

reduce the number of defects in software. Furthermore, this study’s findings provided

information about the applicability of UTAUT to software testing methods.

This chapter begins with a discussion of the validity and reliability of the research

instrument used in this study. This discussion is followed by a list of considerations for the

validity of the data obtained. These considerations include nonresponse bias and the extent to

which the data meet the statistical tests’ assumptions. Next, the descriptive data for the study

participants and the results of the statistical analyses are presented. Then, the study findings are

evaluated in a brief discussion. The chapter ends with a summary of the main points raised in the

chapter.

Validity and Reliability of the Data

The survey instrument used in this study was created and employed by the developers of

UTAUT to collect data relating to the UTAUT constructs and moderating variables in their field

studies (Venkatesh et al., 2003). Venkatesh et al. (2003) used partial least squares to verify the

reliability and validity of the measures used in their survey instrument. They performed 48

validity tests across two studies and three time periods to assess the instrument’s discriminant

validity and convergent validity. They found that all internal consistency reliability values were

 74

higher than 0.70. They determined that the loading pattern was acceptable as most of the

loadings were at least 0.70. Furthermore, they observed high intra-construct survey item

correlations and low inter-construct item correlations.

Another factor that could affect the interpretation of the study findings is the presence of

nonresponse bias. The researcher performed a wave analysis to estimate the nonresponse bias for

the variables of interest. In wave analysis, a widely used method for assessing nonresponse bias,

the study participants are divided into groups, or “waves,” according to when they completed the

survey (Phillips et al., 2016). The first wave’s respondents are considered true respondents, while

the last wave’s respondents are considered the proxy nonrespondents. The potential participants

who received a study invitation but never took the survey are the actual nonrespondents. The

nonresponse bias is calculated by first obtaining the mean value of the variable of interest for

each of the two waves of responses. Then, the proportion of actual nonrespondents is multiplied

by the difference between these means (Phillips et al., 2016). In this study, the respondents who

completed the survey before the reminder e-mail was sent comprise the first wave. The last wave

consists of respondents who completed the survey after the reminder e-mail was sent. The

nonresponse bias for each variable and their possible values are presented in Table 2.

 75

Table 2

Nonresponse Bias and Range of Possible Values for the Variables of Interest

Variable Nonresponse Biasa Range of Possible Values

Performance Expectancy 0.15 [4-28]

Effort Expectancy 1.8 [4-28]

Behavioral Intention 2.4 [3-21]

Frequency of Use 0.93 [1-7]
aThe positive values of the nonresponse biases indicate that the mean value for the first wave of

respondents was greater than the mean value for the second wave.

The statistical test used to answer the study research questions was Spearman’s rank-order

correlation test. Three assumptions must be made to perform this test (Lund Research Ltd,

2018d). They are listed as follows:

1. The variables must be measured on the ordinal, ratio, or interval scale.

2. The variables must represent paired observations.

3. There must be a monotonic relationship between the two variables.

The data meet the first assumption since the PE, EE, BI, and frequency of use (FoU) were all

measured on the ordinal scale. The data meet the second assumption because the variables of

interest represent paired observations for each participant. Visual inspection of scatterplots for

each variable pair shows that the data meet the third assumption of monotonicity.

In addition to the relationships between the variables of interest, the researcher is interested

in how the moderators, namely age, gender, and experience, affect these relationships. The

researcher assessed these three variables’ moderating effect by performing moderator analyses

using moderated multiple regression (MMR). In MMR, an interaction term between a

 76

moderating variable and an independent variable is added to the regression equation to test

whether the interaction is statistically significant (Lund Research Ltd, 2018a). Six assumptions

must be made before performing MMR. These assumptions are listed as follows:

1. The variables must be continuous.

2. The variables must be linearly related to each other.

3. Multicollinearity should not be present.

4. The data should not contain significant outliers.

5. The data should show homoscedasticity.

6. The residuals should be normally distributed.

Because the variables of interest are ordinal variables with at least five categories, the

researcher treated them as continuous variables per studies that suggest doing so is permissible

for statistical analysis (Taylor et al., 2006; Zumbo & Zimmerman, 1993). Therefore, the first

assumption was met. The researcher verified the linearity of the variables by visual inspection of

scatterplots. The independent variables were mean centered before analysis to reduce

multicollinearity (Lund Research Ltd, 2018a). The data met the assumption of not showing

multicollinearity, as evidenced by no tolerance values less than 0.1 (Lund Research Ltd, 2018a).

There were no significant outliers for most analyses, as evidenced by no studentized deleted

residuals greater than ±3 standard deviations (Cohen et al., 2003). The data met the assumption

of homoscedasticity. The researcher verified this assumption by visual inspection of the

studentized residuals plotted against the predicted values (Lund Research Ltd, 2018a). For most

analyses, the residuals were normally distributed, as assessed by Shapiro-Wilk's test (p > .05)

(Lund Research Ltd, 2018a). The researcher handled any violations of these assumptions by

transforming the dependent variable (Lund Research Ltd, 2018a).

 77

Results

In this quantitative correlational study, the researcher collected data for the variables of

interest via survey. The researcher performed data analysis to assess the correlation between

these four variable pairs: the PE and BI, the EE and BI, the PE and FoU, and the EE and FoU.

The researcher performed moderator analysis to evaluate the effect of age, gender, and

experience on the relationships between these variable pairs.

The researcher recruited study participants from the contributors to the open-source

software projects in the GitHub “Software in science” collection. The participants had to be at

least 18 years of age and speak English fluently to be eligible for this study. The study

recruitment letter, containing a link to the survey instrument, was e-mailed to a list of 700

potential participants. Twelve e-mails bounced, leaving 688 potential participants who

successfully received the recruitment e-mail. Forty-one of these 688 potential participants

completed the survey, resulting in a response rate of 6.0%. The demographic information about

the participants is presented in Table 3. The sample is highly unevenly distributed across the

gender categories, with 90.2% of participants identifying as male and only 4.9% identifying as

female. The participants are distributed across age groups ranging from 21-24 to 50-54, with the

largest number of participants (26.8%) belonging to the 35-39 group. Most participants (58.54%)

indicated they have less than six months of experience with MT.

 78

Table 3

Gender, Age, and Experience of Study Participants

Variable Classification Frequency (N=41) %

Gender Male

Female

Other

No response

37

2

-

2

90.2

4.9

0.0

4.9

Age 21-24 1 2.44

Experience

25-29

30-34

35-39

40-44

45-49

50-54

No response

Less than 6 months

1 to 3 years

4 to 6 years

7 years or more

No response

3

8

11

5

3

7

3

24

6

4

6

1

7.32

19.5

26.8

12.2

7.32

17.1

7.32

58.54

14.63

9.76

14.63

2.44

Note. No participants identified their gender as “Other.”

Descriptive statistics for the PE, EE, BI, and FoU are presented in Table 4. The scores for

the PE, EE, and BI constructs were obtained by summing the Likert scores of the survey items

that correspond to that construct. Given that the range of possible scores for the PE and EE is [4-

28], the mean and median values of the PE and EE are near the middle of the range of possible

scores. The range of possible scores for the BI is [3-21], meaning that the center of the BI data is

 79

near the middle of the range of possible scores. Since the range of possible scores for the FoU is

[1-7], the center of the FoU data is at the lower end of the range.

Table 4

Descriptive Statistics for the Variables of Interest

Variable Mean Median Standard Deviation Standard Error of the Mean

PE 16.54 16.00 5.13 0.80

EE

BI

FoU

18.83

11.32

2.44

20.00

12.00

2.00

5.16

6.47

1.75

0.81

1.01

0.27

 Table 5 presents the survey items that correspond to the PE construct and their possible

scores. The table contains the percentage of the sample that indicated each score. For the survey

item, “I would find the method useful in my job,” most responses are relatively evenly spread

across the four scores of “Neither agree nor disagree” (21.95%), “Somewhat agree” (19.51%),

“Agree” (24.39%), and “Strongly agree” (19.51%). The score “Neither agree nor disagree” has

the most responses for the two survey items, “Using the method enables me to accomplish tasks

more quickly” (51.22%) and “Using the method increases my productivity” (46.34%). For the

last item, “If I use the method, I will increase my chances of getting a raise,” most responses

belong to the two scores “Strongly disagree” (36.59%) and “Neither agree nor disagree”

(36.59%).

 80

Table 5

Percentages of Responses for Performance Expectancy (PE) Survey Items

Item Strongly

Disagree

Disagree Somewhat

Disagree

Neither

Agree

nor

Disagree

Somewhat

Agree

Agree Strongly

Agree

I would find

the method

useful in my

job.

Using the

method

enables me

to

accomplish

tasks more

quickly.

 4.88

4.88

0.00

4.88

9.76

7.32

21.95

51.22

19.51

12.20

24.39

7.32

19.51

12.20

Using the

method

increases

my

productivity.

If I use the

method, I

will increase

my chances

of getting a

raise.

 4.88

36.59

0.00

12.20

12.20

7.32

46.34

36.59

12.20

0.00

14.63

4.88

9.76

2.44

Note. Survey items were adapted from Venkatesh et al. (2003).

 81

Table 6 presents the survey items that correspond to the EE construct and their possible

scores. The table contains the percentage of the sample that indicated each score. For the survey

item “The method is clear and understandable,” most responses belong to the three scores of

“Neither agree nor disagree” (24.39%), “Somewhat agree” (19.51%), and “Agree” (24.39%). For

the survey item “It would be easy for me to become skillful at using the method,” most responses

belong to “Neither agree nor disagree” (31.71%) and “Agree” (31.71%). For the item “I would

find the method easy to use,” the highest percentage of respondents answered, “Neither agree nor

disagree” (31.71%), followed by “Somewhat agree” (24.39%) and “Agree” (24.39%). For the

last item “Learning to use the method is easy for me,” most responses belong to the two scores of

“Agree” (34.15%) and “Neither agree nor disagree” (29.27%).

 82

Table 6

Percentages of Responses for Effort Expectancy (EE) Survey Items

Item Strongly

Disagree

Disagree Somewhat

Disagree

Neither

Agree

nor

Disagree

Somewhat

Agree

Agree Strongly

Agree

The method

is clear and

understanda

ble.

It would be

easy for me

to become

skillful at

using the

method.

I would find

the method

easy to use.

Learning to

use the

method is

easy for me.

 7.32

2.44

2.44

2.44

4.88

2.44

2.44

2.44

12.20

4.88

9.76

7.32

24.39

31.71

31.71

29.27

19.51

19.51

24.39

19.51

24.39

31.71

24.39

34.15

7.32

7.32

4.88

4.88

Note. Survey items were adapted from Venkatesh et al. (2003).

Table 7 presents the survey items that correspond to the BI construct and their possible

scores. The table contains the percentage of the sample that indicated each score. For the survey

item “I intend to use the method in the next 12 months,” most responses belong to the three

scores of “Disagree” (21.95%), “Agree” (21.95%), and “Strongly disagree” (19.51%). For the

 83

item “I predict I would use the method in the next 12 months” most responses belong to the three

scores “Agree” (26.83%), “Disagree” (24.39%), and “Strongly disagree” (19.51%). For the item

“I plan to use the method in the next 12 months,” most responses are evenly divided among the

three scores of “Disagree” (24.39%), “Strongly disagree” (21.95%), and “Agree” (21.95%).

Table 7

Percentages of Responses for Behavioral Intention (BI) Survey Items

Item Strongly

Disagree

Disagree Somewhat

Disagree

Neither

Agree

nor

Disagree

Somewhat

Agree

Agree Strongly

Agree

I intend to

use the

method in

the next 12

months.

I predict I

would use

the method

in the next

12 months.

I plan to use

the method

in the next

12 months.

 19.51

19.51

21.95

21.95

24.39

24.39

2.44

2.44

0.00

9.76

4.88

12.20

17.07

12.20

9.76

21.95

26.83

21.95

7.32

9.76

9.76

Note. Survey items were adapted from Venkatesh et al. (2003).

 84

Table 8 presents the survey item that corresponds to the FoU and its possible scores. The

table contains the percentage of the sample that indicated each score. The score with the most

responses is “Never” (48.78%). Most of the remaining responses are distributed across the four

scores of “Sometimes” (14.63%), “Rarely” (12.20%), “Occasionally” (9.76%), and “Usually”

(9.76%). No participant responded with “Every Time.”

Table 8

Percentage of Responses for Frequency of Use (FoU) Survey Item

 Never Rarely Occasionally Sometimes Frequently Usually Every

Time

 48.78 12.20 9.76 14.63 4.88 9.76 0.00

Research Question 1/Hypothesis

RQ1

To what extent is there a relationship between the acceptance of metamorphic testing

(MT) among open-source software developers and the following constructs: (a) performance

expectancy and (b) effort expectancy?

H1a

There is a statistically significant relationship between MT's acceptance among open-

source software developers and either of the following constructs: (a) performance expectancy or

(b) effort expectancy.

The acceptance of MT was represented in this study by the BI. The researcher performed

Spearman's rank-order correlation test to assess the BI and PE relationship among contributors to

open-source software projects. There was a statistically significant, moderate positive correlation

 85

between the BI and the PE, rs(39) = .636, p < .001. Therefore, we can reject the null hypothesis

and accept the alternative hypothesis. A scatterplot of the BI versus the PE is shown in Figure 1.

Figure 1

Scatterplot of Behavioral Intention vs. Performance Expectancy

The researcher carried out another Spearman's rank-order correlation test to assess the

relationship between the BI and the EE among contributors to open-source software projects.

Similarly to the relationship between the BI and the PE, there was a statistically significant,

moderate positive correlation between the BI and the EE, rs(39) = .635, p < .001. A scatterplot of

the BI versus the EE is shown in Figure 2.

 86

Figure 2

Scatterplot of Behavioral Intention vs. Effort Expectancy

The researcher performed MMRs to assess age’s effect on the relationship between the

BI and PE and the relationship between the BI and EE. Age did not moderate the relationship

between the BI and the PE, as evidenced by an increase in total variation explained of 1.2%,

which was not statistically significant (F(1, 34) = .767, p = .387). Age did not moderate the

relationship between the BI and the EE, as evidenced by an increase in total variation explained

of 2.7%, which was not statistically significant (F(1, 34) = 1.721, p = .198).

The researcher performed MMRs to assess gender’s effect on the relationship between

the BI and PE and the relationship between the BI and EE. Gender did not moderate the

relationship between the BI and the PE, as evidenced by an increase in total variation explained

of 0.4%, which was not statistically significant (F(1, 35) = .260, p = .613). Gender did not

 87

moderate the relationship between the BI and the EE, as evidenced by an increase in total

variation explained of 0.2%, which was not statistically significant (F(1, 35) = .123, p = .728).

The researcher performed MMRs to assess experience’s effect on the relationship

between the BI and PE and on the relationship between the BI and EE. Experience did not

moderate the relationship between the BI and the PE, as evidenced by an increase in total

variation explained of 0.0%, which was not statistically significant (F(1, 36) = .002, p = .961).

Experience did not moderate the relationship between the BI and the EE, as evidenced by an

increase in total variation explained of 0.1%, which was not statistically significant (F(1, 36) =

.052, p = .822).

The data met the assumptions of the statistical tests for all analyses except for one. For

the analysis that evaluated gender’s effect on the relationship between the BI and EE, the

assumption of a normal distribution of the residuals was violated. The researcher handled this

violation by transforming the dependent variable using a “reflect and square root” transformation

(Lund Research Ltd, 2018e).

Research Question 2/Hypothesis

RQ2

To what extent is there a relationship between the frequency of use of MT among open-

source software developers and the following constructs: (a) performance expectancy and (b)

effort expectancy?

H2a

There is a statistically significant relationship between the frequency of use of MT among

open-source software developers and either of the following constructs: (a) performance

expectancy or (b) effort expectancy.

 88

The researcher performed a Spearman's rank-order correlation to assess the relationship

between the FoU and the PE among contributors to open-source software projects. As with the

relationship between the BI and the PE, there was a statistically significant, moderate positive

correlation between the FoU and the PE, rs(39) = .642, p < .001. Therefore, we can reject the null

hypothesis and accept the alternative hypothesis. A scatterplot of the FoU versus the PE is shown

in

Figure 3.

Figure 3

Scatterplot of Frequency of Use vs. Performance Expectancy

The researcher performed another Spearman's rank-order correlation to assess the

relationship between the FoU and the EE among contributors to open-source software projects.

 89

There was a statistically significant, strong positive correlation between the FoU and the EE,

rs(39) = .701, p < .001. A scatterplot of the FoU versus the EE is shown in Figure 4.

Figure 4

Scatterplot of Frequency of Use vs. Effort Expectancy

The researcher carried out MMRs to assess age’s effect on the FoU and PE relationship

and the FoU and EE relationship. Age did not moderate the relationship between the FoU and the

PE, as evidenced by an increase in total variation explained of 3.3%, which was not statistically

significant (F(1, 34) = 2.222, p = .145). Age did not moderate the relationship between the FoU

and the EE, as evidenced by an increase in total variation explained of 6.5%, which was not

statistically significant (F(1, 34) = 3.930, p = .056).

The researcher performed MMRs to assess gender’s effect on the relationship between

the FoU and PE and the relationship between the FoU and EE. Gender did not moderate the

 90

relationship between the FoU and the PE, as evidenced by an increase in total variation explained

of 0.0%, which was not statistically significant (F(1, 35) = .020, p = .888). Gender did not

moderate the relationship between the FoU and the EE, as evidenced by an increase in total

variation explained of 0.0%, which was not statistically significant (F(1, 35) = .007, p = .936).

The researcher carried out MMRs to assess experience’s effect on the relationship

between the FoU and PE and between the FoU and EE. Experience did not moderate the

relationship between the FoU and the PE, as evidenced by an increase in total variation explained

of 0.3%, which was not statistically significant (F(1, 36) = .480, p = .493). Experience did not

moderate the relationship between the FoU and the EE, as evidenced by an increase in total

variation explained of 1.0%, which was not statistically significant (F(1, 36) = 1.107, p = .300).

The data met the assumptions of the statistical tests for all analyses except for two. For

the analysis that assessed experience’s effect on the relationship between the FoU and the PE,

one outlier was detected. The researcher handled this violation by transforming the dependent

variable using a “square root” transformation (Lund Research Ltd, 2018e). For the analysis that

assessed experience’s effect on the relationship between the FoU and EE, the assumption of a

normal distribution of the residuals was violated. The researcher also addressed this violation by

transforming the dependent variable using a “square root” transformation.

Evaluation of the Findings

The first research question pertains to the relationship between the acceptance of MT

among open-source software developers and the UTAUT constructs of the PE and EE. In this

study, the acceptance of MT is represented by the UTAUT construct of the BI. The researcher

found a moderate positive correlation between the BI and the PE. Also, the researcher found a

moderate positive correlation between the BI and the EE. This finding is consistent with

 91

UTAUT, which stipulates that the PE and EE relate to the BI (Venkatesh et al., 2003). Other

studies in which the researchers applied UTAUT to software development practices and

processes have yielded inconsistent findings. In an analysis of the adoption of continuous

delivery among software development project managers, Anderson (2019) found that the BI was

moderately positively correlated with the PE but did not find a significant relationship between

the EE and the BI. On the other hand, in a study of software development process adoption,

Guardado (2012) found that the EE, but not the PE, was a significant determinant of the BI.

The second research question asks about the relationship between the FoU of MT among

open-source software developers and the UTAUT constructs of PE and EE. The researcher found

a moderate positive correlation between the FoU and the PE and a strong positive correlation

between the FoU and the EE. This result is consistent with the technology acceptance model

(TAM), on which UTAUT is partially based. The TAM stipulates that perceived usefulness (PU)

and perceived ease of use (PEOU), which correspond heavily to the PE and EE respectively, are

the primary determinants of technology usage behaviors (Davis, 1986).

The results indicate that none of the previous relationships were moderated by age,

gender, or experience. This finding is inconsistent with UTAUT. In UTAUT, age, gender, and

experience moderate the relationship between the EE and the BI, and age and gender moderate

the relationship between the PE and the BI (Venkatesh et al., 2003). However, Anderson (2019)

found that experience did not moderate the relationship between the PE and BI, nor did it

moderate the EE and BI relationship.

Summary

In this study, the researcher administered a previously validated survey instrument to a

group of open-source software contributors to measure their FoU of the MT method and the

 92

UTAUT constructs of the PE, EE, and BI. The researcher carried out a descriptive analysis of the

variables of interest. Next, the researcher performed Spearman’s rank-order correlation tests and

found significant positive relationships between the BI and PE, the BI and EE, the FoU and PE,

and the FoU and EE. This finding is consistent with the theoretical frameworks of the UTAUT

and the TAM. The researcher did not detect moderating effects of age, gender, or experience on

any of the relationships examined, which is inconsistent with the UTAUT. Other studies in

which researchers employed UTAUT in software development contexts yielded mixed results.

 93

Chapter 5: Implications, Recommendations, and Conclusions

The study addressed the inadequacy of software testing methods to detect all defects,

which could be mitigated by using the metamorphic testing (MT) method (Lidbury et al., 2015;

Rao et al., 2013). Software defects can result in poor software performance, reduced precision or

accuracy of software output, and retractions of research publications for which defective

software was used (Kanewala & Chen, 2018). Detecting software defects can be challenging due

to the oracle problem, code complexity, and time and resource constraints (Chen et al., 2018;

Ding et al., 2016; Zhou & Sun, 2019).

The purpose of this study was to examine relationships between the use and acceptance

of the MT method among open-source developers and the constructs of performance expectancy

(PE) and effort expectancy (EE), which may be related to MT use and acceptance. The PE and

EE are stipulated by the unified theory of acceptance and use of technology (UTAUT), which

served as the theoretical framework for this study. Another goal of this study was to understand

how the variables of age, gender, and experience moderate these relationships. The study

findings can help practitioners create interventions to increase MT usage and reduce the number

of software defects. Furthermore, the study results can be used to evaluate the applicability of the

UTAUT to software testing methods.

The researcher applied a quantitative methodology with a correlational research design to

carry out this study. The study design was appropriate for addressing the study problem and

purpose; in this study, the researcher examined the correlation between the use and acceptance of

the MT method, which is effective at finding software defects, and factors that could be

significantly related to the use and acceptance of the MT method. The UTAUT construct of

behavioral intention (BI) represented MT acceptance in this study. The use of MT was

 94

operationalized in this study by the variable of frequency of use (FoU). Due to its cost-

effectiveness and high accessibility to the target population, an online survey instrument was

used to collect data from the study sample. After performing data analysis, the researcher found

moderate to strong positive correlations between these four variable pairs: the PE and BI, the EE

and BI, the PE and FoU, and the EE and FoU. The study results did not indicate a moderating

effect of age, gender, or experience on any of the relationships between these variable pairs.

One limitation of the study was nonresponse bias since not all potential participants

recruited for the study completed the survey. Another limitation was the study data's subjectivity

because the researcher could not verify the accuracy of the self-reported survey responses.

Furthermore, the correlational research design means that the researcher could not infer causal

relationships between constructs and variables from the study findings. The study methodology

limited the results to the variables and constructs of interest. Another study limitation was the

sampling method. The researcher only recruited contributors to the open-source software (OSS)

projects in the GitHub “Software in science” collection who were at least 18 years old and spoke

English fluently. Hence, the study findings may not be generalizable to all OSS developers.

In this chapter, the researcher discusses the study's implications for the study problem,

purpose, and research questions. Also, the researcher explains how the study findings contribute

to the guiding theoretical framework and existing literature. Next, recommendations for applying

the study findings to theory and practice are outlined. Then, suggestions for future research that

builds on the study findings are listed. Finally, the researcher draws conclusions regarding the

research problem addressed and the significance of the study findings.

 95

Implications

One factor that could have affected the interpretation of the study findings was the

presence of nonresponse bias. The wave analysis results suggest that nonrespondents would tend

to score slightly less on the FoU, BI, PE, and EE than did the study sample. This finding may be

due to nonrespondents being less interested or less familiar with MT than respondents are, and

hence being less likely to use or intend to use MT. Nonrespondents may also be less likely to

believe that MT would help improve their job performance or be easy to use. Another factor that

could have influenced the study findings' interpretation is the self-reported nature of the data.

Some participants may not have answered all survey items honestly and accurately. Finally, only

contributors to the OSS projects in the GitHub “Software in science” collection who were at least

18 years old and spoke English fluently were recruited for this study. Hence, the study findings

may not be generalizable to OSS developers who do not have these characteristics.

Research Question 1/Hypothesis

The researcher found a statistically significant, moderate positive correlation between the

BI and the PE and between the BI and the EE. Therefore, the study findings suggest that the

alternative hypothesis can be accepted. In other words, there is a statistically significant

relationship between the acceptance of MT among OSS developers and either the PE or EE.

These findings align with the study purpose, which is to examine relationships between

the MT method's use and acceptance among OSS developers and the PE and EE constructs. The

research problem is the inadequacy of conventional software testing methods to detect all

software defects. Existing research suggests that this problem could be mitigated using the MT

method when testing software (Lidbury et al., 2015; Rao et al., 2013). The study findings suggest

that increasing the PE and EE, as they pertain to the MT method, among OSS developers will

 96

increase the developers’ acceptance of the MT method. In other words, increasing the extent to

which developers believe that MT will improve their job performance and be easy to use will

increase MT's acceptance. This outcome could mitigate the study problem by resulting in fewer

software defects.

The findings are consistent with the theoretical framework of UTAUT, which stipulates

that the PE and EE are related to the BI (Venkatesh et al., 2003). Although a literature review did

not uncover any research in which UTAUT was applied to the study of software testing methods,

the theory has been applied to other software development practices and processes (Anderson,

2019; Guardado, 2012). In an analysis of the adoption of continuous delivery among project

managers, Anderson (2019) found a positive correlation between the PE and BI but did not find a

significant relationship between the EE and BI. On the other hand, in a study of software

development process acceptance, Guardado (2012) found that the EE, but not the PE, was a

significant determinant of the BI. The inconsistency of these findings may be due to the different

subject matter of the studies and differences in the study samples' composition. Anderson (2019)

examined the acceptance of a software development approach among a sample of software

development project managers at various organizations. Most of them had at least three years of

project management experience. In this context, the EE or ease of use of the approach may not

have played a significant role in a typical project manager’s decision to adopt the practice.

Guardado (2012) studied software development process adoption among a sample of analysts,

developers, managers, and technical experts who all work at the same company. In this context,

the PE may not have been significantly related to the BI due to organizational culture or the

study participants' roles.

 97

The acceptance of MT was operationalized in this study by the UTAUT construct of BI,

which may have influenced these results' interpretation. The BI construct only represents the

participants’ intention to use the new technology within a specific time period. In this study, this

time period was 12 months. Hence, the study findings do not consider participants who only

intend to use the MT method more than 12 months into the future.

Research Question 2/Hypothesis

The researcher found a statistically significant, moderate positive correlation between the

FoU and the PE. Also, the researcher found a statistically significant, strong positive correlation

between the FoU and the EE. Therefore, the study findings suggest that the alternative

hypothesis can be accepted. In other words, there is a statistically significant relationship

between the FoU of the MT method among OSS developers and either the PE or EE.

These findings align with the study purpose, which is to examine relationships between

the MT method's use and acceptance among OSS developers and the PE and EE constructs. The

research problem is the inadequacy of conventional software testing methods to detect all

software defects. Existing research suggests that this problem could be mitigated by using the

MT method when testing software (Lidbury et al., 2015; Rao et al., 2013). The study findings

suggest that increasing the PE and EE, as they pertain to the MT method, will increase the MT

method’s acceptance and usage among OSS developers. In other words, increasing the extent to

which developers believe that MT will improve their job performance and be easy to use will

increase MT usage. Increasing usage of the MT method may mitigate the study problem by

resulting in fewer software defects.

The study findings indicate that none of the relationships mentioned earlier are moderated

by the variables of age, gender, or experience. This finding is inconsistent with UTAUT, in

 98

which age, gender, and experience moderate the relationship between the EE and the BI

(Venkatesh et al., 2003). Furthermore, UTAUT specifies that age and gender moderate the

relationship between the PE and the BI. One factor that may affect these findings is the highly

uneven gender distribution of the study sample, with only 4.9% identifying as female. Another

possible reason for the divergent results is that UTAUT was developed using a study that was

performed in a different context than this study. Venkatesh et al. (2003) created UTAUT based

on a study on the acceptance and use of an IT system among non-IT employees who were

initially unfamiliar with the system. It is possible that age, gender, and experience played a more

critical role in technology adoption in this context. Furthermore, Venkatesh et al. (2003)

collected data from a larger sample, which gave the study greater statistical power to detect

moderating effects. On the other hand, the study findings were consistent with Anderson (2019),

who found that experience did not moderate the relationship between the PE and BI or between

the EE and BI.

Another contribution this study makes to the existing literature is measuring MT's

acceptance and usage among a sample of OSS developers. The BI's descriptive statistics suggest

that about 46% of participants do not intend to use MT within the next 12 months, and about

46% intend to use MT within the next 12 months. The descriptive statistics for the FoU indicate

that about 49% of participants never use MT, 36% use MT but infrequently, and 15% use MT

often. In summary, nearly half of the participants never use MT and do not intend to use it in the

next year.

Theoretical Framework

The study findings have implications for the UTAUT, which is the theoretical framework

that guided the design of this study. Also, the study findings provide insights into related

 99

theoretical frameworks, namely the TAM and the HMSAM. In this section, the researcher

discusses the contributions of the study to theory.

The researcher found that the BI and the FoU of the MT method are moderately to

strongly positively correlated with the UTAUT constructs of PE and EE. These findings support

the applicability of a portion of the UTAUT theoretical framework, namely the PE and EE, to the

study of software testing method adoption. The results also support adding positive relationships

between actual technology usage and both the PE and EE constructs to the UTAUT framework.

Although the existing UTAUT framework stipulates positive relationships between the BI

construct and the PE and EE, the framework does not specify relationships between actual usage

and the PE and EE. In addition, the study findings do not support the idea that the variables of

age, gender, and experience moderate the relationships between the BI, PE, and EE. Hence, the

study results support removing these moderating variables from the UTAUT framework in the

context of software testing method adoption.

These findings also support extending the technology acceptance model (TAM), on

which the UTAUT is partially based, to the study of software testing method usage. The TAM

stipulates that perceived usefulness (PU) and perceived ease of use (PEOU), which correspond

heavily to the PE and EE respectively, are the primary determinants of technology usage

behaviors (Davis, 1986). Since the hedonic-motivation system adoption model (HMSAM) is a

variation of the TAM containing the PU and PEOU constructs, the study findings support the

applicability of this portion of the HMSAM to software testing methods (Lowry et al., 2013).

Recommendations for Practice

 The results of the study have important implications for software development practice.

The researcher developed recommendations for practice based on the study findings. In this

 100

section, the researcher lists the recommendations that correspond to each research question

addressed in the study.

Research Question 1/Hypothesis

1. Practitioners should develop interventions to increase the PE and EE among OSS

developers in order to improve MT acceptance. The finding that MT acceptance is

positively related to the PE and EE constructs supports the need for interventions that

increase the PE and EE among OSS developers. The result that nearly half of the sample

does not intend to use MT supports such interventions' importance. These interventions

should explain how using the MT method can improve job performance. Such

explanations could increase the PE among OSS developers. Research that demonstrates

the effectiveness of MT for detecting software defects and handling the oracle problem

could be used to support the claim that MT can enhance job performance (Cañizares et

al., 2019; Ding et al., 2016; Kanewala & Chen, 2014; Kanewala & Chen, 2018; Zhou &

Sun, 2019).

2. Education and training on the MT method should be provided to OSS developers.

Educators should incorporate the MT method into software testing books and curricula

for software engineering and computer science degree programs. Education on MT could

increase the PE and EE among OSS developers. Furthermore, organizations could

increase MT acceptance by training employees on the MT method. Since some OSS

developers contribute to OSS projects as part of their employment, organizational

training on MT could increase the EE among OSS developers. Based on the study

findings, increasing the EE and PE would be likely to result in a growth of MT

acceptance among OSS developers.

 101

Research Question 2/Hypothesis

1. Practitioners should develop interventions to increase the EE among OSS developers in

order to increase MT usage. The finding that MT usage is strongly positively related to

the EE construct supports the need for interventions that increase the EE among OSS

developers. The result that nearly half of the sample never uses MT supports such

interventions' importance. These interventions should familiarize developers with

research about the appropriate selection of metamorphic relations (MRs). Such

interventions could increase the EE because choosing MRs is a critical step when

learning to use MT effectively. Many MR selection approaches have been proposed by

researchers (Ding et al., 2016; Kanewala, 2015; Lin et al., 2018; Zhou et al., 2016). In

addition to specialized methodologies, researchers have developed frameworks to help

identify useful MRs, such as the METRIC framework (Chen et al., 2016).

Recommendations for Future Research

Future researchers might build on this study by examining the factors associated with MT

use and acceptance using qualitative methodology. The participants would answer open-ended

questions about their perception of the MT method and their reasons for using it or not using it.

The questions could be guided by theoretical frameworks such as UTAUT but would allow

participants to provide additional information about their responses. From this methodology, the

researcher could learn about factors associated with MT adoption that are not included in the

theoretical constructs of interest. Researchers could also examine whether specific contexts, such

as the type or complexity of the software project being tested, are related to participants’

decisions to use the MT method. Future research could also involve developing interventions to

 102

increase MT usage and testing their effectiveness using an experimental or quasi-experimental

design.

The researcher only recruited participants who have contributed to OSS projects, limiting

the study findings’ generalizability to organizational contexts. Future researchers could recruit

software developers and testers from organizations to overcome this limitation. Also, the

generalizability of the study could be improved by recruiting participants from a wider variety of

OSS projects rather than just the GitHub “Software in science” collection of projects. Recruiting

more female participants would increase the study's ability to detect the effect of gender on the

relationships between the constructs of interest.

The next logical step in this line of research is to examine the relationship between the

other UTAUT constructs, namely social influence (SI) and facilitating conditions (FC), and MT

adoption. The SI represents the effect of other people's opinions on the user’s decision to use

technology (Venkatesh et al., 2003). The FC is defined as the user’s perception that technical and

organizational infrastructure supports the use of the technology. This research would provide

additional evidence regarding the applicability of UTAUT to software testing methods. It would

give information about the relationship of these constructs to MT use and acceptance. Existing

research supports the idea that software testers face challenges caused by human and

organizational factors (Gonçalves et al., 2017; Majchrzak, 2010; Seth et al., 2014; Zhang, 2009).

Also, future research could involve studying the relationship between MT adoption and

constructs from other theoretical frameworks. For example, the HMSAM constructs of curiosity,

immersion, joy, and control could be included in future studies (Lowry et al., 2013). Although

HMSAM was developed to study the adoption of hedonic-motivation systems (HMS) rather than

utilitarian-motivation systems (UMS), researchers have recognized that hedonic motivation may

 103

play a role in UMS adoption (Venkatesh & Davis, 2000). Hence, research that focuses on the

relationship between software testing method adoption and HMSAM constructs may be

enlightening.

Conclusions

The study addressed the problem of the inadequacy of conventional software testing

methods to detect all software defects. This problem is significant because software defects can

cause various issues, including poor software performance, low precision or accuracy of software

output, and incorrect research results. Existing research suggests that the MT method finds many

defects that conventional testing methods cannot detect. The MT method can also handle the

oracle problem, a common challenge associated with testing scientific software. However, there

is little research regarding the acceptance and use of MT among software developers and factors

associated with its use and acceptance.

In this quantitative correlational study, the researcher examined relationships between the

MT method's use and acceptance among OSS developers and the UTAUT constructs of PE and

EE. The UTAUT served as the guiding theoretical framework for this study. Another objective

of the study was to understand how the UTAUT moderating variables of age, gender, and

experience affect these relationships.

The study results indicated significant moderate to strong positive relationships between

MT use and acceptance with both the PE and EE constructs. On the other hand, the researcher

did not detect a moderating effect of age, gender, or experience on any relationship between

these variables. The study findings support the relevance of the UTAUT constructs and

relationships, but not the UTAUT moderating variables, to adopting software testing methods

among developers. Furthermore, the findings support the applicability of the TAM constructs of

 104

PU and PEOU to software testing methods. Also, the study results suggest that increasing the

extent to which developers believe that MT will improve their job performance and improving its

ease of use will increase their acceptance and use of MT.

 105

References

Abackerli, A. J., Pereira, P. H., & Calonego, N. (2010). A case study on testing CMM

uncertainty simulation software (VCMM). Journal of the Brazilian Society of Mechanical

Sciences and Engineering, 32(1), 8-14. doi:10.1590/S1678-58782010000100002

Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage

of information technology: A replication. MIS Quarterly, 16(2), 227-247.

doi:10.2307/249577

Agarwal, R., & Karahanna, E. (2000). Time flies when you're having fun: Cognitive absorption

and beliefs about information technology usage. MIS Quarterly, 24(4), 665-694.

doi:10.2307/3250951

Ajibade, P. (2018). Technology acceptance model limitations and criticisms: Exploring the

practical applications and use in technology-related studies, mixed-method, and

qualitative researches. Library Philosophy and Practice.

http://digitalcommons.unl.edu/libphilprac/1941

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision

Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T

Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior.

Prentice-Hall.

Al-Azawei, A., Parslow, P., & Lundqvist, K. (2017). Investigating the effect of learning styles in

a blended e-learning system: An extension of the technology acceptance model (TAM).

Australasian Journal of Educational Technology, 33(2).

https://doi.org/10.14742/ajet.2741

 106

Almaiah, M., Alamri, M. M., & Al-Rahmi, W. (2019). Applying the UTAUT model to explain

the students’ acceptance of mobile learning system in higher education. IEEE Access, 7,

174673-174686. doi:10.1109/ACCESS.2019.2957206

Al-Mamary, Y. H., Shamsuddin, A., & Aziati, N. (2015). Investigating the key factors

influencing on management information systems adoption among telecommunication

companies in Yemen: The conceptual framework development. International Journal of

Energy, Information and Communications, 6(1), 59-68.

http://dx.doi.org/10.14257/ijeic.2015.6.1.06

Al-Maroof, R. S., Salloum, S. A., AlHamadand, A. Q. M., & Shaalan, K. (2020). Understanding

an extension technology acceptance model of Google Translation: A multi-cultural study

in United Arab Emirates. International Journal of Interactive Mobile Technologies,

14(3). https://doi.org/10.3991/ijim.v14i03.11110

Al-Qaysi, N., Mohamad-Nordin, N., & Al-Emran, M. (2020). A systematic review of social

media acceptance from the perspective of educational and information systems theories

and models. Journal of Educational Computing Research, 57(8), 2085-2109.

doi:10.1177/0735633118817879

Alrawashdeh, T. A., Elbes, M. W., Almomani, A., ElQirem, F., & Tamimi, A. (2019). User

acceptance model of open source software: An integrated model of OSS characteristics

and UTAUT. Journal of Ambient Intelligence and Humanized Computing.

https://doi.org/10.1007/s12652-019-01524-7

Al-Saedi, K., Al-Emran, M., Abusham, E., & El Rahman, S. (2019). Mobile payment adoption:

A systematic review of the UTAUT model. 2019 International Conference on Fourth

Industrial Revolution (ICFIR). doi:10.1109/ICFIR.2019.8894794

 107

Anderson, A. J. (2019). Examination of adoption theory on the DevOps practice of continuous

delivery (Publication No. 22624635) [Doctoral dissertation, Walden University].

ProQuest.

Avelino, G., Passos, L., Hora, A., & Valente, M. T. (2016). A novel approach for estimating

Truck Factors. 2016 IEEE 24th International Conference on Program Comprehension

(ICPC). doi:10.1109/ICPC.2016.7503718

Bagozzi, R. P. (2007). The legacy of the Technology Acceptance Model and a proposal for a

paradigm shift. Journal of the Association for Information Systems, 8(4), 244-254.

Retrieved from https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1406&context=jais

Bahamdain, S. S. (2015). Open source software (OSS) quality assurance: A survey paper.

Procedia Computer Science, 56, 459-464. doi:10.1016/j.procs.2015.07.236

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory.

Prentice-Hall.

Bao, Z., Murray, J. I., Boyle, T., Ooi, S. L., Sandel, M. J., & Waterston, R. H. (2006). Automated

cell lineage tracing in Caenorhabditis elegans. Proceedings of the National Academy of

Sciences of the United States of America, 103(8), 2707-2712.

https://doi.org/10.1073/pnas.0511111103

Basili, V. R., Carver, J. C., Cruzes, D., Hochstein, L. M., Hollingsworth, J. K., Shull, F., &

Zelkowitz, M. V. (2008). Understanding the high-performance-computing community: A

software engineer's perspective. IEEE Software, 25(4). doi:10.1109/MS.2008.103

Boyle, T. J., Bao, Z., Murray, J. I., Araya, C. L., & Waterston, R. H. (2006). AceTree: A tool for

visual analysis of Caenorhabditis elegans embryogenesis. BMC Bioinformatics, 7.

doi:10.1186/1471-2105-7-275

 108

Brown, S. A., & Venkatesh, V. (2005). Model of adoption of technology in households: A

baseline model test and extension incorporating household life cycle. MIS Quarterly,

29(3), 399-426. doi:10.2307/25148690

Burnstein, I. (2003). Practical software testing: A process-oriented approach. Springer.

Cañizares, P. C., Núñez, A., & de Lara, J. (2019). An expert system for checking the correctness

of memory systems using simulation and metamorphic testing. Expert Systems with

Applications, 132, 44-62. doi:10.1016/j.eswa.2019.04.070

Cao, Y., Zhou, Z. Q., & Chen, T. Y. (2013). Metamorphic relations and dissimilarities of test

case executions. 2013 13th International Conference on Quality Software, 153-162.

doi:10.1109/QSIC.2013.43

Chandio, F. H., Irani, Z., Zeki, A. M., Shah, A., & Shah, S. C. (2017). Online banking

information systems acceptance: An empirical examination of system characteristics and

Web security. Information Systems Management, 34(1), 50-64.

https://doi.org/10.1080/10580530.2017.1254450

Chaparro, O., Bernal-Cárdenas, C., Lu, J., Moran, K., Marcus, A., Penta, M. D., Poshyvanyk, D.,

& Ng, V. (2019). Assessing the quality of the steps to reproduce in bug reports. European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering, 86-96. doi:10.1145/3338906.3338947

Chen, T. Y., Cheung, S. C., & Yiu, S. M. (1998). Metamorphic testing: A new approach for

generating next test cases (Report No. HKUST-CS98-01). Hong Kong, China: Hong

Kong University of Science and Technology.

Chen, T. Y., Huang, D. H., Tse, T. H., & Zhou, Z. Q. (2004). Case studies on the selection of

useful relations in metamorphic testing. Proceedings of the 4th Ibero-American

 109

Symposium on Software Engineering and Knowledge Engineering (JIISIC '04), 569-583.

Retrieved from

https://www.researchgate.net/publication/228781884_Case_Studies_on_the_Selection_of

_Useful_Relations_in_Metamorphic_Testing

Chen, T. Y., Kuo, F.-C., Liu, H., Poon, P.-L., Towey, D., Tse, T. H., & Zhou, Z. Q. (2018).

Metamorphic testing: A review of challenges and opportunities. ACM Computing

Surveys, 51(1). https://doi.org/10.1145/3143561

Chen, T. Y., Poon, P.-L., & Xie, X. (2016). METRIC: Metamorphic relation identification based

on the category-choice framework. Journal of Systems and Software, 116, 177-190.

https://doi.org/10.1016/j.jss.2015.07.037

Choy, L. T. (2014). The strengths and weaknesses of research methodology: Comparison and

complimentary between qualitative and quantitative approaches. IOSR Journal of

Humanities and Social Science (IOSR-JHSS), 19(4), 99-104. Retrieved from

http://www.academia.edu/download/37208325/N0194399104.pdf

Chuttur, M. (2009). Overview of the technology acceptance model: Origins, developments, and

future directions. Sprouts: Working Papers on Information Systems, 9(37).

http://aisel.aisnet.org/sprouts_all/290

Coelho, J., & Valente, M. T. (2017). Why modern open source projects fail. Foundations of

Software Engineering, 186-196. doi:10.1145/3106237.3106246

Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation

analysis for the behavioral sciences. Lawrence Erlbaum Associates.

 110

Compeau, D. R., Higgins, C. A., & Huff, S. (1999). Social cognitive theory and individual

reactions to computing technology: A longitudinal study. MIS Quarterly, 23(2), 145-158.

doi:10.2307/249749

Constantinou, E., Ampatzoglou, A., & Stamelos, I. (2015). Quantifying reuse in OSS: A large-

scale empirical study. International Journal of Open Source Software & Processes, 5(3),

1-19. doi:10.4018/IJOSSP.2014070101

Corder, G. W., & Foreman, D. I. (2014). Nonparametric statistics: A step-by-step approach.

Hoboken, NJ: John Wiley & Sons, Inc.

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods

approaches (4th ed.). Thousand Oaks, CA: Sage Publications.

Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user

information systems: Theory and results. [Doctoral dissertation, Massachusetts Institute

of Technology]. MIT Libraries. https://dspace.mit.edu/handle/1721.1/15192

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of

information technology. MIS Quarterly, 13(3), 319-339. doi:10.2307/249008

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology:

A comparison of two theoretical models. Management Science, 35(8), 982-1003.

doi:10.1287/mnsc.35.8.982

Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use

computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.

https://doi.org/10.1111/j.1559-1816.1992.tb00945.x

 111

Dembsey, J. (2020, June 26). What are the IRB requirements for my recruitment materials?

Northcentral University Institutional Review Board.

https://ncu.libanswers.com/irb/faq/278108

Diethelm, K. (2012). The limits of reproducibility in numerical simulation. Computing in Science

& Engineering, 14(1), 64-72. doi:10.1109/MCSE.2011.21

Ding, J., Zhang, D., & Hu, X.-H. (2016). An application of metamorphic testing for testing

scientific software. 2016 1st International Workshop on Metamorphic Testing, 37-43.

doi:10.1109/MET.2016.015

Dinh-Trong, T. T., & Bieman, J. M. (2005). The FreeBSD project: A replication case study of

open source development. IEEE Transactions on Software Engineering, 31(6), 481-494.

doi:10.1109/TSE.2005.73

Dubey, A., & Wan, H. (2018). Methodology for building granular testing in multicomponent

scientific software. 2018 IEEE/ACM 13th International Workshop on Software

Engineering for Science.

Dubois, P. F. (2012). Testing scientific programs. Computing in Science & Engineering, 14(4),

69-73. doi:10.1109/MCSE.2012.84

Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2017). Re-examining

the unified theory of acceptance and use of technology (UTAUT): Towards a revised

theoretical model. Information Systems Frontiers, 21, 719-734. doi:10.1007/s10796-017-

9774-y

Everett, G. D., & McLeod, R., Jr. (2007). Software testing: Testing across the entire software

development life cycle. John Wiley & Sons, Inc.

 112

Farhoodi, R., Garousi, V., Pfahl, D., & Sillito, J. (2013). Development of scientific software: A

systematic mapping, a bibliometrics study, and a paper repository. International Journal

of Software Engineering and Knowledge Engineering, 23(4).

doi:10.1142/S0218194013500137

Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical

power analysis program for the social, behavioral, and biomedical sciences. Behavior

Research Methods, 39(2), 175-191.

Fazzini, M., Prammer, M., d’Amorim, M., & Orso, A. (2018). Automatically translating bug

reports into test cases for mobile apps. Software Testing and Analysis, 141-152.

doi:10.1145/3213846.3213869

Fishbein, M. (1967). Readings in attitude theory and measurement. John Wiley & Sons.

Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to

theory and research. Addison-Wesley.

Foucault, M., Palyart, M., Blanc, X., Murphy, G., & Falleri, J.-R. (2015). Impact of developer

turnover on quality in open-source software. Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of

Software Engineering, 829-841. doi:10.1145/2786805.2786870

García, A. S., Fernández-Sotos, P., Fernández-Caballero, A., Navarro, E., Latorre, J. M.,

Rodriguez-Jimenez, R., & González, P. (2019). Acceptance and use of a multi‑modal

avatar‑based tool for remediation of social cognition deficits. Journal of Ambient

Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-019-01418-8

Geldenhuys, J. (2010). Finding the core developers. 2010 36th EUROMICRO Conference on

Software Engineering and Advanced Applications, 447-450. doi:10.1109/SEAA.2010.66

 113

GitHub, Inc. (2020a). Collection: Software in science. https://github.com/collections/software-in-

science

GitHub, Inc. (2020b). The world’s leading software development platform - GitHub.

https://github.com

Goeminne, M., & Mens, T. (2011). Evidence for the Pareto principle in open source software

activity. CSMR 2011 Workshop on Software Quality and Maintainability (SQM).

Retrieved from

https://www.researchgate.net/profile/Tom_Mens/publication/228728263_Evidence_for_t

he_Pareto_principle_in_Open_Source_Software_Activity/links/0deec518e5b1e8ca77000

000/Evidence-for-the-Pareto-principle-in-Open-Source-Software-Activity.pdf

Gonçalves, W. F., de Almeida, C. B., de Araújo, L. L., Ferraz, M. S., Xandú, R. B., & de Farias,

I. (2017). The influence of human factors on the software testing process: The impact of

these factors on the software testing process. 2017 12th Iberian Conference on

Information Systems and Technologies (CISTI). doi:10.23919/CISTI.2017.7975873

Gousios, G., Zaidman, A., Storey, M.-A., & Deursen, A. v. (2015). Work practices and

challenges in pull-based development: The integrator's perspective. Software

Engineering, 358-368. doi:10.1109/ICSE.2015.55

Guardado, D. R. (2012). Process acceptance and adoption by IT software project practitioners

(Publication No. 3512446) [Doctoral dissertation, Capella University]. UMI Dissertation

Publishing.

Gunawan, H. (2018). Identifying factors affecting smart city adoption using the unified theory of

acceptance and use of technology (UTAUT) method. 2018 International Conference on

Orange Technologies (ICOT). doi:10.1109/ICOT.2018.8705803

 114

Haefliger, S., von Krogh, G., & Spaeth, S. (2008). Code reuse in open source software.

Management Science, 54(1), 180-193. doi:10.1287/mnsc.1070.0748

Hai, L. C., & Alam Kazmi, S. H. (2015). Dynamic support of government in online shopping.

Asian Social Science, 11(22). doi:10.5539/ass.v11n22p1

Hatton, L. (1997). The T experiments: Errors in scientific software. IEEE Computational Science

and Engineering, 4(2), 27-38. doi:10.1109/99.609829

Hatton, L., & Roberts, A. (1994). How accurate is scientific software? IEEE Transactions on

Software Engineering, 20(10), 785-797. doi:10.1109/32.328993

Heaton, D., & Carver, J. C. (2015). Claims about the use of software engineering practices in

science: A systematic literature review. Information and Software Technology, 207-219.

doi:10.1016/j.infsof.2015.07.011

Hendrickson, A. R., Massey, P. D., & Cronan, T. P. (1993). On the test-retest reliability of

perceived usefulness and perceived ease of use scales. MIS Quarterly, 17(2), 227-230.

doi:10.2307/249803

Hertel, G., Niedner, S., & Herrmann, S. (2003). Motivation of software developers in open

source projects: An Internet-based survey of contributors to the Linux kernel. Open

Source Software Development, 32(7), 1159-1177. doi:10.1016/S0048-7333(03)00047-7

Hinsen, K. (2015). The approximation tower in computational science: Why testing scientific

software is difficult. Computing in Science & Engineering, 17(4), 72-77.

doi:10.1109/MCSE.2015.75

Hojjati, S. N., & Khodakarami, M. (2016). Evaluation of factors affecting the adoption of smart

buildings using the technology acceptance model. International Journal of Advanced

Networking and Applications, 7(6), 2936-2943. Retrieved from

 115

https://search.proquest.com/openview/d2000e7122e5e73a34b74cd5f23fc0f1/1?pq-

origsite=gscholar&cbl=886380

Hovy, C., & Kunkel, J. (2016). Towards automatic and flexible unit test generation for legacy

HPC code. 2016 Fourth International Workshop on Software Engineering for High

Performance Computing in Computational Science and Engineering (SE-HPCCSE).

doi:10.1109/SE-HPCCSE.2016.005

Howden, W. E. (1978). Theoretical and empirical studies of program testing. IEEE Transactions

on Software Engineering, 293-298. doi:10.1109/TSE.1978.231514

Hsu, C.-L., & Lu, H.-P. (2007). Consumer behavior in online game communities: A motivational

factor perspective. Computers in Human Behavior, 23(3), 1642-1659.

doi:10.1016/j.chb.2005.09.001

Huang, F., & Teo, T. (2019). Influence of teacher-perceived organisational culture and school

policy on Chinese teachers’ intention to use technology: An extension of technology

acceptance model. Educational Technology Research and Development, 68, 1547-1567.

doi:10.1007/s11423-019-09722-y

Hui, Z.-W., & Huang, S. (2013). Achievements and challenges of metamorphic testing. 2013

Fourth World Congress on Software Engineering Software Engineering (WCSE), 73-77.

doi:10.1109/WCSE.2013.16

Jegers, K. (2007). Pervasive game flow: Understanding player enjoyment in pervasive gaming.

ACM Computers in Entertainment, 5(1), 1-11. https://doi.org/10.1145/1236224.1236238

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., & Damian, D. (2016).

An in-depth study of the promises and perils of mining GitHub. Empirical Software

Engineering, 21, 2035-2071. doi:10.1007/s10664-015-9393-5

 116

Kanewala, U. G. (2015). Testing scientific software: Techniques for automatic detection of

metamorphic relations (Doctoral dissertation). Retrieved from ProQuest Dissertations

and Theses database. (UMI No. 3706367)

Kanewala, U., & Bieman, J. M. (2014). Testing scientific software: A systematic literature

review. Information and Software Technology, 56(10), 1219-1232.

https://doi.org/10.1016/j.infsof.2014.05.006

Kanewala, U., & Chen, T. Y. (2018). Metamorphic testing: A simple yet effective approach for

testing scientific software. Computing in Science & Engineering, 21(1), 66-72.

doi:10.1109/MCSE.2018.2875368

Karagöz, G., & Sözer, H. (2017). Reproducing failures based on semiformal failure scenario

descriptions. Software Quality Journal, 25(1), 111-129. doi:10.1007/s11219-016-9310-1

Katzman, B., Tang, D., Santella, A., & Bao, Z. (2018). AceTree: A major update and case study

in the long-term maintenance of open-source scientific software. BMC Bioinformatics,

19(121). https://doi.org/10.1186/s12859-018-2127-0

Kellogg, L. H., Hwang, L. J., Gassmoller, R., Bangerth, W., & Heister, T. (2019). The role of

scientific communities in creating reusable software: Lessons from geophysics.

Computing in Science & Engineering, 21(2), 25-35. doi:10.1109/MCSE.2018.2883326

Kelly, D., Thorsteinson, S., & Hook, D. (2011). Scientific software testing: Analysis with four

dimensions. IEEE Software, 28(3), 84-90. doi:10.1109/MS.2010.88

Kim, M. J., & Hall, C. M. (2019). A hedonic motivation model in virtual reality tourism:

Comparing visitors and non-visitors. International Journal of Information Management,

46, 236-249. https://doi.org/10.1016/j.ijinfomgt.2018.11.016

 117

Kim, S. S., Malhotra, N. K., & Narasimhan, S. (2005). Two competing perspectives on

automatic use: A theoretical and empirical comparison. Information Systems Research,

16(4). https://doi.org/10.1287/isre.1050.0070

Koch, S., & Schneider, G. (2002). Effort, co-operation, and co-ordination in an open source

software project: GNOME. Information Systems Journal, 12(1), 27-42.

doi:10.1046/j.1365-2575.2002.00110.x

Kochhar, P. S., Bissyandé, T. F., Lo, D., & Jiang, L. (2013). An empirical study of adoption of

software testing in open source projects. 2013 13th International Conference on Quality

Software, 103-112. doi:10.1109/QSIC.2013.57

Koteska, B., Mishev, A., & Pejov, L. (2018). Quantitative measurement of scientific software

quality: Definition of a novel quality model. International Journal of Software

Engineering and Knowledge Engineering, 28(3), 407-425.

doi:10.1142/S0218194018500146

Laudon, K. C., & Laudon, J. P. (2012). Management information systems: Managing the digital

firm. Prentice Hall.

Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A

critical review of the technology acceptance model. Information & Management, 40, 191-

204. doi:10.1016/S0378-7206(01)00143-4

Leman, J. K., Weitzner, B. D., Renfrew, P. D., Lewis, S. M., Moretti, R., Watkins, A. M.,

Mulligan, V. K., Lyskov, S., Adolf-Bryfogle, J., Labonte, J. W., Krys, J., Bystroff, C.,

Schief, W., Gront, D., Schueler-Furman, O., Baker, D., Bradley, P., Dunbrack, R.,

Kortemme, T., … Bonneau, R. (2020). Better together: Elements of successful scientific

 118

software development in a distributed collaborative community. PLoS Computational

Biology, 16(5). https://doi.org/10.1371/journal.pcbi.1007507

Leong, L. W., Ibrahim, O., Dalvi-Esfahani, M., Shahbazi, H., & Nilashi, M. (2018). The

moderating effect of experience on the intention to adopt mobile social network sites for

pedagogical purposes: An extension of the technology acceptance model. Education and

Information Technologies, 23, 2477-2498. https://doi.org/10.1007/s10639-018-9726-2

Li, J. (2020). Blockchain technology adoption: Examining the fundamental drivers. Proceedings

of the 2020 2nd International Conference on Management Science and Industrial

Engineering, 253-260. doi:10.1145/3396743.3396750

Lidbury, C., Lascu, A., Chong, N., & Donaldson, A. F. (2015). Many-core compiler fuzzing.

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI’15), 50(6), 65-76.

https://dx.doi.org/10.1145/2737924.2737986

Lim, Y. J., Osman, A., Salahuddin, S. N., Romle, A. R., & Abdullah, S. (2016). Factors

influencing online shopping behavior: The mediating role of purchase intention. Procedia

Economics and Finance, 35, 401-410. doi:10.1016/S2212-5671(16)00050-2

Lin, B., Robles, G., & Serebrenik, A. (2017). Developer turnover in global, industrial open

source projects: Insights from applying survival analysis. 2017 IEEE 12th International

Conference on Global Software Engineering (ICGSE), 66-75.

doi:10.1109/ICGSE.2017.11

Lin, X., Simon, M., & Niu, N. (2018). Hierarchical metamorphic relations for testing scientific

software. 2018 ACM/IEEE International Workshop on Software Engineering for Science.

doi:https://doi.org/10.1145/3194747.3194750

 119

Lowry, P. B., Gaskin, J. E., Twyman, N. W., Hammer, B., & Roberts, T. L. (2013). Taking "fun

and games" seriously: Proposing the hedonic-motivation system adoption model

(HMSAM). Journal of the Association for Information Systems, 14(11), 617-671.

doi:10.17705/1jais.00347

Lu, Y., Mao, X., Li, Z., Zhang, Y., Wang, T., & Yin, G. (2016). Does the role matter? An

investigation of the code quality of casual contributors in GitHub. 2016 23rd Asia-Pacific

Software Engineering Conference, 49-56. doi:10.1109/APSEC.2016.44

Lund Research Ltd. (2018a). Moderator analysis (dichotomous moderator variable). Laerd

statistics. https://statistics.laerd.com/premium/spss/mcd/moderator-continuous-

dichotomous-in-spss.php

Lund Research Ltd. (2018b). Ordinal regression using SPSS Statistics. Laerd statistics.

https://statistics.laerd.com/spss-tutorials/ordinal-regression-using-spss-statistics.php

Lund Research Ltd. (2018c). Spearman’s rank-order correlation. Laerd statistics.

https://statistics.laerd.com/statistical-guides/spearmans-rank-order-correlation-statistical-

guide.php

Lund Research Ltd. (2018d). Spearman’s rank-order correlation using SPSS Statistics. Laerd

statistics. https://statistics.laerd.com/spss-tutorials/spearmans-rank-order-correlation-

using-spss-statistics.php

Lund Research Ltd. (2018e). Transforming data in SPSS Statistics. Laerd statistics.

https://statistics.laerd.com/spss-tutorials/transforming-data-in-spss-statistics.php

Majchrzak, T. A. (2010). Best practices for the organizational implementation of software

testing. Proceedings of the 43rd Hawaii International Conference on System Sciences.

doi:10.1109/HICSS.2010.83

 120

Méndez, M., Tinetti, F. G., & Overbey, J. L. (2014). Climate models: Challenges for Fortran

development tools. 2014 Second International Workshop on Software Engineering for

High Performance Computing in Computational Science and Engineering.

doi:10.1109/SE-HPCCSE.2014.7

Méndez, M., & Tinetti, F. G. (2017). Change-driven development for scientific software. The

Journal of Supercomputing: An International Journal of High-Performance Computer

Design, Analysis, and Use, 73(5), 2229-2257. doi:10.1007/s11227-017-1966-1

Mesh, E. S., Burns, G., & Hawker, J. S. (2014). Leveraging expertise to support scientific

software process improvement decisions. Computing in Science & Engineering, 16(3),

28-34. doi:10.1109/MCSE.2014.10

Mesh, E. S., Tolar, D. M., & Hawker, J. S. (2016). Exploring process improvement decisions to

support a rapidly evolving developer base. 2016 IEEE/ACM 38th IEEE International

Conference on Software Engineering Companion, 777-780.

http://dx.doi.org/10.1145/2889160.2889209

Miller, G. (2006). A scientist’s nightmare: Software problem leads to five retractions. Science,

314(5807). doi:10.1126/science.314.5807.1856

Mockus, A. (2010). Organizational volatility and its effects on software defects. Foundations of

Software Engineering, 117-126. doi:10.1145/1882291.1882311

Mockus, A., Fielding, R. T., & Herbsleb, J. D. (2002). Two case studies of open source software

development: Apache and Mozilla. ACM Transactions on Software Engineering and

Methodology (TOSEM), 11(3), 309-346. doi:10.1145/567793.567795

 121

Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions

of adopting an information technology innovation. Information Systems Research, 2(3),

192-222. https://doi.org/10.1287/isre.2.3.192

Morris, C., & Segal, J. (2009). Some challenges facing scientific software developers: The case

of molecular biology. 2009 Fifth IEEE International Conference on e-Science, 216-222.

doi:10.1109/e-Science.2009.38

Morris, M. G., & Venkatesh, V. (2000). Age differences in technology adoption decisions:

Implications for a changing work force. Personnel Psychology, 53(2), 375-403.

https://doi.org/10.1111/j.1744-6570.2000.tb00206.x

Murphy, C., Shen, K., & Kaiser, G. (2009). Automatic system testing of programs without test

oracles. Proceedings of the Eighteenth International Symposium on Software Testing and

Analysis (ISSTA ’09), 189-200. doi:10.1145/1572272.1572295

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., & Ye, Y. (2002). Evolution patterns of

open-source software systems and communities. Principles of Software Evolution, 76-85.

doi:10.1145/512035.512055

Nanthaamornphong, A., & Carver, J. C. (2018). Test-driven development in HPC science: A

case study. Computing in Science & Engineering, 20(5), 98-113.

doi:10.1109/MCSE.2018.05329819

Ober, I., & Ober, I. (2017). On patterns of multi-domain interaction for scientific software

development focused on separation of concerns. Procedia Computer Science, 108, 2298-

2302. doi:10.1016/j.procs.2017.05.288

Oluwajana, D., Idowu, A., Nat, M., Vanduhe, V., & Fadiya, S. (2019). The adoption of students’

hedonic motivation system model to gamified learning environment. Journal of

 122

Theoretical and Applied Electronic Commerce Research, 14(3), 156-167.

doi:10.4067/S0718-18762019000300109

Oxford University Press. (2020). Proportionate stratified sampling. In Oxford reference.

https://www.oxfordreference.com/view/10.1093/oi/authority.20110803100349910

Phillips, A. W., Reddy, S., & Durning, S. J. (2016). Improving response rates and evaluating

nonresponse bias in surveys. Medical Teacher, 38, 217-228.

doi:10.3109/0142159X.2015.1105945

Przedzinski, T., Malawski, M., Was, Z., Carver, J., & Rouson, D. (2020). Software development

strategies for high-energy physics simulations based on quantum field theory. Computing

in Science & Engineering, 22(4), 86-98. doi:10.1109/MCSE.2019.2947017

Qualtrics. (2020). Security statement. https://www.qualtrics.com/security-statement/

Rao, P., Zheng, Z., Chen, T. Y., Wang, N., & Cai, K.-Y. (2013). Impacts of test suite’s class

imbalance on spectrum-based fault localization techniques. Proceedings of the 13th

International Conference on Quality Software (QSIC’13), 260-267.

doi:10.1109/QSIC.2013.18

Remmel, H. (2014). Supporting the quality assurance of a scientific framework. [Doctoral

dissertation, University of Heidelberg]. heiDOK.

Riesch, M., Nguyen, T. D., & Jirauschek, C. (2020). Bertha: Project skeleton for scientific

software. PLoS ONE, 15(3). https://doi.org/10.1371/journal.pone.0230557

Rilee, M., & Clune, T. (2014). Test-driven development in HPC science: A case study.

Computing in Science & Engineering, 20(5), 98-113. doi:10.1109/MCSE.2018.05329819

 123

Robles, G., Koch, S., & González-Barahona, J. M. (2004). Remote analysis and measurement of

libre software systems by means of the CVSAnalY tool. 26th International Conference

on Software Engineering (ICSE 2004). doi:10.1049/ic:20040351

Rogers, E. (1995). Diffusion of innovations. Free Press.

Russell, S., Bennett, T. D., & Ghosh, D. (2019). Software engineering principles to improve

quality and performance of R software. PeerJ Computer Science, 5. doi:10.7717/peerj-

cs.175

Saddler, J. A., & Cohen, M. B. (2017). EventFlowSlicer: A tool for generating realistic goal-

driven GUI tests. Automated Software Engineering, 955-960.

doi:10.1109/ASE.2017.8115711

Salkind, N. J. (2010). Encyclopedia of research design (Vol. 1). SAGE Publications, Inc.

Sanders, R., & Kelly, D. (2008). Dealing with risk in scientific software development. IEEE

Software, 25(4), 21-28. doi:10.1109/MS.2008.84

Saphira, M., & Rusli, A. (2019). Towards a gamified support tool for requirements gathering in

Bahasa Indonesia. 2019 5th International Conference on New Media Studies.

doi:10.1109/CONMEDIA46929.2019.8981828

Schwittek, W., & Eicker, S. (2013). A study on third party component reuse in Java enterprise

open source software. Component-Based Software Engineering, 75-80.

doi:10.1145/2465449.2465468

Segal, J. (2008a). Models of scientific software development. Workshop on Software

Engineering in Computational Science and Engineering (SECSE 08). Retrieved from

http://oro.open.ac.uk/17673/1/SegalICSE08R.pdf

 124

Segal, J. (2008b). Scientists and software engineers: A tale of two cultures. Proceedings of the

Psychology of Programming Interest Group (PPIG 08), 44-51. Retrieved from

https://oro.open.ac.uk/17671/1/PPIG_08Segal.pdf

Segal, J. (2009). Some challenges facing software engineers developing software for scientists.

2nd International Software Engineering for Computational Scientists and Engineers

Workshop (SECSE ’09), 9-14. doi:10.1109/SECSE.2009.5069156

Segars, A. H., & Grover, V. (1993). Re-examining perceived ease of use and usefulness: A

confirmatory factor analysis. MIS Quarterly, 17(4), 517-525. doi:10.2307/249590

Segura, S., Durán, A., Troya, J., & Ruiz-Cortés, A. (2017). A template–based approach to

describing metamorphic relations. 2017 IEEE/ACM 2nd International Workshop on

Metamorphic Testing (MET), 3-9. doi:10.1109/MET.2017.3

Segura, S., Fraser, G., Sanchez, A. B., & Ruiz-Cortés, A. (2016). A survey on metamorphic

testing. IEEE Transactions on Software Engineering, 42(9), 805-824.

doi:10.1109/TSE.2016.2532875

Seth, F. P., Taipale, O., & Smolander, K. (2014). Organizational and customer related challenges

of software testing: An empirical study in 11 software companies. 2014 IEEE Eighth

International Conference on Research Challenges in Information Science (RCIS).

doi:10.1109/RCIS.2014.6861031

Setiawan, S. S., & Suryadibrata, A. (2019). Fitrust: Promoting healthy lifestyle through gamified

mobile health application. 2019 5th International Conference on New Media Studies.

doi:10.1109/CONMEDIA46929.2019.8981840

Shahri, M. P., Srinivasan, M., Reynolds, G., Bimczok, D., Kahanda, I., & Kanewala, U. (2019).

Metamorphic testing for quality assurance of protein function prediction tools. 2019

 125

IEEE International Conference on Artificial Intelligence Testing (AITest), 140-148.

doi:10.1109/AITest.2019.00017

Shankar, A., & Kumari, P. (2019). A study of factors affecting mobile governance (mGov)

adoption intention in India using an extension of the technology acceptance model

(TAM). South Asian Journal of Management, 26(4), 71-94. Retrieved from

https://search.proquest.com/openview/4f5a1fa73bc3c28d59bf8cc47afcf989/1?pq-

origsite=gscholar&cbl=46967

Shields, P. M., & Rangarajan, N. (2013). A playbook for research methods: Integrating

conceptual frameworks and project management. New Forums Press, Inc.

Silic, M., & Lowry, P. B. (2020). Using design-science based gamification to improve

organizational security training and compliance. Journal of Management Information

Systems, 37(1), 129-161. https://doi.org/10.1080/07421222.2020.1705512

Smith, S., Jegatheesan, T., & Kelly, D. (2016). Advantages, disadvantages, and

misunderstandings about document driven design for scientific software. 2016 Fourth

International Workshop on Software Engineering for High Performance Computing in

Computational Science and Engineering, 41-48. doi:10.1109/SE-HPCCSE.2016.10

Steinmacher, I., Chaves, A. P., Conte, T., & Gerosa, M. A. (2014). Preliminary empirical

identification of barriers faced by newcomers to open source software projects. 2014

Brazilian Symposium on Software Engineering (SBES), 51-60. doi:10.1109/SBES.2014.9

Steinmacher, I., Conte, T., Gerosa, M. A., & Redmiles, D. (2015). Social barriers faced by

newcomers placing their first contribution in open source software projects. Computer

Supported Cooperative Work & Social Computing, 1379-1392.

doi:10.1145/2675133.2675215

 126

Steinmacher, I., Pinto, G., Wiese, I. S., & Gerosa, M. A. (2018). Almost there: A study on quasi-

contributors in open source software projects. Software Engineering, 256-266.

doi:10.1145/3180155.3180208

Storer, T. (2017). Bridging the chasm: A survey of software engineering practice in scientific

programming. ACM Computing Surveys, 50(4). doi:10.1145/3084225

Straub, D., Limayem, M., & Karahanna-Evaristo, E. (1995). Measuring system usage:

Implications for IS theory testing. Management Science, 41(8), 1328-1342.

doi:10.1287/mnsc.41.8.1328

Subramanian, G. H. (1994). A replication of perceived usefulness and perceived ease of use

measurement. Decision Sciences, 25, 863-874. https://doi.org/10.1111/j.1540-

5915.1994.tb01873.x

Swearngin, A., Cohen, M. B., John, B. E., & Bellamy, R. K. E. (2013). Human performance

regression testing. 2013 35th International Conference on Software Engineering, 152-

161. doi:10.1109/ICSE.2013.6606561

Sweetser, P., & Wyeth, P. (2005). GameFlow: A model for evaluating player enjoyment in

games. ACM Computers in Entertainment, 3(3).

https://doi.org/10.1145/1077246.1077253

Szajna, B. (1994). Software evaluation and choice: Predictive validation of the technology

acceptance instrument. MIS Quarterly, 18(3), 319-324. doi:10.2307/249621

Taylor, A. B., West, S. G., & Aiken, L. S. (2006). Loss of power in logistic, ordinal logistic, and

probit regression when an outcome variable is coarsely categorized. Educational and

Psychological Measurement, 66(2), 228-239. doi:10.1177/0013164405278580

 127

Taylor, S., & Todd, P. A. (1995). Assessing IT usage: The role of prior experience. MIS

Quarterly, 19(2), 561-570. doi:10.2307/249633

Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a

conceptual model of utilization. MIS Quarterly, 15(1), 124-143. doi:10.2307/249443

Toffola, L. D., Staicu, C.-A., & Pradel, M. (2017). Saying ‘Hi!’ is not enough: Mining inputs for

effective test generation. 2017 32nd IEEE/ACM International Conference on Automated

Software Engineering (ASE). doi:10.1109/ASE.2017.8115617

Toronto, N., & McCarthy, J. (2014). Practically accurate floating-point math. Computing in

Science & Engineering, 16(4), 80-95. doi:10.1109/MCSE.2014.90

Turner, M., Kitchenham, B., Brereton, P., Charters, S., & Budgen, D. (2010). Does the

technology acceptance model predict actual use? A systematic literature review.

Information and Software Technology, 52(5), 463-479.

https://doi.org/10.1016/j.infsof.2009.11.005

Vagias, W. M. (2006). Likert-type scale response anchors. Clemson University.

http://media.clemson.edu/cbshs/prtm/research/resources-for-research-page-2/Vagias-

Likert-Type-Scale-Response-Anchors.pdf

Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly,

28(4), 695-704. doi:10.2307/25148660

Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on

interventions. Decision Sciences, 39(2), 273-315. https://doi.org/10.1111/j.1540-

5915.2008.00192.x

Venkatesh, V., Brown, S. A., Maruping, L. M., & Bala, H. (2008). Predicting different

conceptualizations of system use: The competing roles of behavioral intention,

 128

facilitating conditions, and behavioral expectation. MIS Quarterly, 32(3), 483-502.

doi:10.2307/25148853

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance

model: Four longitudinal field studies. Management Science, 46(2), 186-204.

http://dx.doi.org/10.1287/mnsc.46.2.186.11926

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of

information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.

doi:10.2307/30036540

Venkatesh, V., & Speier, C. (1999). Computer technology training in the workplace: A

longitudinal investigation of the effect of the mood. Organizational Behavior and Human

Decision Processes, 79(1), 1-28. doi:10.1006/obhd.1999.2837

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information

technology: Extending the unified theory of acceptance and use of technology. MIS

Quarterly, 36(1), 157-178. doi:10.2307/41410412

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2016). Unified theory of acceptance and use of

technology: A synthesis and the road ahead. Journal of the Association for Information

Systems, 17(5), 328-376. doi:10.17705/1jais.00428

Walldén, S., Mäkinen, E., & Raisamo, R. (2016). A review on objective measurement of usage

in technology acceptance studies. Universal Access in the Information Society, 15, 713-

726. doi:10.1007/s10209-015-0443-y

Wu, J., & Du, H. (2012). Toward a better understanding of behavioral intention and system

usage constructs. European Journal of Information Systems, 21, 680-698.

doi:10.1057/ejis.2012.15

 129

Wu, P., Xiao-Chun, S., Jiang-Jun, T., & Hui-Min, L. (2005). Metamorphic testing and special

case testing: A case study. Journal of Software, 16(7). doi:10.1360/jos161210

Xiang, Z., & Wu, W. (2018). The willingness to use the campus express delivery service based

on UTAUT. 2018 5th International Conference on Industrial Economics System and

Industrial Security Engineering (IEIS). doi:10.1109/IEIS.2018.8597792

Yamashita, K., McIntosh, S., Kamei, Y., Hassan, A. E., & Ubayashi, N. (2015). Revisiting the

applicability of the Pareto principle to core development teams in open source software

projects. Principles of Software Evolution, 46-55. doi:10.1145/2804360.2804366

Yang, B., Rousseau, R., Wang, X., & Huang, S. (2018). How important is scientific software in

bioinformatics research? A comparative study between international and Chinese

research communities. Journal of the Association for Information Science and

Technology, 69(9), 1122-1133. doi:10.1002/asi

Yousafzai, S. Y., Foxall, G. R., & Pallister, J. G. (2007). Technology acceptance: A meta-

analysis of the TAM: Part 1. Journal of Modelling in Management, 2(3), 251-280.

doi:10.1108/17465660710834453

Zaimi, A., Ampatzoglou, A., Triantafyllidou, N., Chatzigeorgiou, A., Mavridis, A., Chaikalis, T.,

Deligiannis, I., Sfetsos, P., & Stamelos, I. (2015). An empirical study on the reuse of

third-party libraries in open-source software development. Informatics Conference, 1-8.

doi:10.1145/2801081.2801087

Zhang, X. (2009). Understanding conflict between developers and testers in software

development: Sources and impact (Doctoral dissertation). Retrieved from ProQuest.

(UMI No. 3400169).

 130

Zheng, Y., Zhang, X., & Ganesh, V. (2013). Z3-str: A z3-based string solver for Web application

analysis. Foundations of Software Engineering, 114-124. doi:10.1145/2491411.2491456

Zhou, Z. Q., & Sun, L. (2019). Metamorphic testing of driverless cars. Communications of the

ACM, 62(3), 61-67. https://doi.org/10.1145/3241979

Zhou, Z. Q., Xiang, S., & Chen, T. Y. (2016). Metamorphic testing for software quality

assessment: A study of search engines. IEEE Transactions on Software Engineering,

42(3), 264-284. doi:10.1109/TSE.2015.2478001

Zumbo, B. D., & Zimmerman, D. W. (1993). Is the selection of statistical methods governed by

level of measurement? Canadian Psychology, 34(4), 390-400. doi:10.1037/h0078865

 131

Appendix A

Research Instrument

 132

 133

 134

 135

 136

 137

Appendix B

IRB Approval Letter

 138

Appendix C

Permission to Use Research Instrument

M I S Quarterly - License Terms and Conditions

Order Date 15-Aug-2020
Order license ID 1055790-1
ISSN 0276-7783

Type of Use Republish in a
thesis/dissertation

Publisher Society for Management
Information Systems and
Management Information
Systems Research Center of
the University of Minnesota

Portion Chart/graph/table/figure

LICENSED CONTENT

Publication Title MIS quarterly

Author/Editor Society for Information
Management (U.S.),
University of Minnesota.
Management Information
Systems Research Center

Date 12/31/1983

Language English

REQUEST DETAILS

Portion Type Chart/graph/table/figure

Country United States of America

Rightsholder M I S Quarterly

Publication Type e-Journal

URL http://www.misq.org

Distribution Worldwide

Number of charts / graphs
/ tables / figures requested

Format (select all that
apply)

Who will republish the
content?

1

Print, Electronic

Academic institution

Translation Original language of
publication

Copies for the disabled? No

Minor editing privileges? No

Incidental promotional No
use?

Duration of Use Current edition and up to 5
years

Lifetime Unit Quantity Up to 499

Rights Requested Main product

Currency USD

NEW WORK DETAILS

Title Metamorphic Testing
Among Open-Source
Software Developers: A

Quantitative Correlational
Study

Instructor name Milton Kabia

Institution name Northcentral University

 139

ADDITIONAL DETAILS
Order reference number N/A The requesting person /

organization to appear on
the license

Brittany Hoard

REUSE CONTENT DETAILS

Title, description or
numeric reference of the
portion(s)

Table 16 Title of the article/chapter
the portion is from

USER ACCEPTANCE OF
INFORMATION
TECHNOLOGY: TOWARD A

Editor of portion(s) Cynthia Beath UNIFIED VIEW

Volume of serial or
monograph

Page or page range of
portion

27

460

Author of portion(s) Society for Information
Management (U.S.);
University of Minnesota.
Management Information
Systems Research Center

Issue, if republishing an 3
article from a serial

Publication date of portion 2003-09-01

