Symmetry-Breaking in Light-Trapping Nanostructures on Silicon Brittany R. Hoard, Swapnadip Ghosh, Ethan C. Culler, Michael Orrill, Sang M. Han, and Sang Eon Han University of New Mexico, Albuquerque, NM 87131, USA

Introduction and Objectives

Previous Results for Inverted Nanopyramids

Mavrokefalos, Han, Yerci, Branham, and Chen, Nano Lett. 12, 2792 (2012).

• Inverted nanopyramids are efficienct in light trapping and can be fabricated on Silicon using simple wet etching.

- Absorption in experiment matched well with theory.
- Further absorption enhancement would require symmetry-breaking.

Objectives

• Elucidate the reason why low symmetry increases absorption by comparing numerical calculations with group theory.

 Realize low symmetry inverted nanopyramids on (001) Silicon surface in experiment.

Results and Discussion

100

HV curr HFW mag ⊞ 0 kV 32 0 nA 29 8 µm 5 000 x

KOH etching 1 min 45 sec

Isotropic etching 18 sec

Conclusion

- As the symmetry of light trapping structures is systematically lowered, the number of optical absorption peaks increases in a manner consistent with group theory.
- With symmetry-breaking, both the number of absorption peaks and the average absorptance increase.
- Symmetry breaking in general enhances the absorption integrated over a broad spectrum by increasing the number of
- Symmetry breaking can be realized in inverted nanopyramids on (001) Si wafers by simple wet etching.
- Isotropic etching after anisotropic alkaline etching can remove unetched regions to enhance light trapping.

