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Abstract—The allergic response in humans results from the
crosslinking of IgE-FceRI receptor complexes via the binding of
IgE antibodies to antigens, which results in cell degranulation.
The relationship between cell degranulation and antigen-antibody
aggregation was investigated for the shrimp allergen Pen a 1. A
biological rule-based model was developed to simulate aggrega-
tion of IgE antibodies and the Pen a 1 antigen. The forward rate
constant and the crosslinking factor were varied to demonstrate
how the model output changes as these model parameters are
changed. It was found that the peak of the dose-response curve
becomes greater and more defined as the crosslinking factor
increases, and that the peak shifts to lower doses as the forward
rate constant increases. Parameter scanning was performed to
fit the model output to experimental cell secretion data obtained
by collaborators, assuming a directly proportional relationship
between the two quantities. Four concentrations of allergen-
specific IgE were examined: 15 ng/mL, 30 ng/mL, 60 ng/mL, and
120 ng/mL. For each IgE concentration, nine doses of Pen a 1
were examined ranging from 0.0001 ng/mL to 10,000 ng/mL. The
average aggregate size was used as the measure of aggregation to
compare to the experimental data. It was found that the output of
the biological rule-based model fit well to the cell degranulation
data.

Index Terms—biological cells, biological processes, biological
system modeling, computational biophysics, computational sys-
tems biology

I. INTRODUCTION

The allergic response in humans is at least partially initiated
by a tyrosine kinase cascade that results from the crosslinking
of FceRI receptors via allergen-specific IgE antibodies binding
to antigens. The IgE antibodies are bound to the receptors.
These receptors are located on the surface of human basophils
and mast cells. Cell degranulation results in allergy symp-
toms. Hence, studying the processes of cell degranulation and
antigen-antibody aggregation is important for understanding
the allergic response.

Computational methods are widely used to study biomolec-
ular interactions due to their complexity. One example of
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such a method is molecular dynamics, which is useful for
simulating atomic motion but is computationally costly for
studying longer timescales (on the order of seconds or longer)
at which cell signaling events occur [1]. Other methods,
including constraint-based modeling and Boolean modeling,
tend to only loosely be connected to physicochemical princi-
ples (or not at all). Models which are constrained by physico-
chemical principles are useful due to causality and the ability
to measure parameters independently. Models that allow the
incorporation of site-specific details and that can overcome the
problem of combinatorial complexity are also highly useful for
biomolecular simulations.

One technique that meets all of the above requirements is
biological rule-based modeling. Biological rule-based model-
ing is a technique for studying the site dynamics of biomolec-
ular networks [1], which involves representing biomolecular
interactions as local rules. With this method, a set of rules,
each representing a set of possible reactions and associated
with a reaction rate, is specified. For traditional rule-based
models, a reaction network is created during simulation from
which a set of coupled ordinary differential equations (ODEs)
is derived. These equations characterize the rates of change of
observables (such as chemical species).

However, the biological rule-based simulator NFsim is
stochastic and particle-based [2]. NFsim models individual
molecules as particle objects, which are tracked throughout
the simulation. NFsim was designed to efficiently model
systems with a large number of possible molecular states and
interactions. One major advantage of NFsim is its ability to
model reaction types, such as aggregation and polymerization,
that cannot be modeled using traditional ODE or stochastic
simulators. NFsim achieves this because its runtime perfor-
mance scales with the number of rules rather than the number
of reactions or configurations. NFsim models are specified in
the BioNetGen Language (BNGL). NFsim was employed to
develop the biological rule-based models used in this study.

The researcher used biological rule-based modeling com-
bined with experimental cell degranulation data obtained from
collaborators to study the allergic response caused by the
shrimp allergen tropomyosin. Shellfish are responsible for
many food allergies, and most shellfish species responsible
for allergic reactions are crustaceans. Tropomyosin is a protein



present in all eukaryotic cells; it is an important allergen found
in many crustaceans, including crab (Cha f 1), squid (Tod p
1), lobster (Pan s 1, Hom a 1), oyster (Cra g 1), and snail
(Tur ¢ 1) [3]. Although there are strong similarities between
the various types of tropomyosin, the tropomyosins found in
vertebrates are often non-allergenic, and the reason for this
difference is not fully understood. There is some evidence
that differences between IgE binding regions in vertebrate and
invertebrate tropomyosins may play a role [4]. Pen a 1 is a type
of tropomyosin molecule found in shrimp. Previous studies
have found that tropomyosin elicits an allergic response in at
least 80% of shrimp-allergic subjects, and that tropomyosin
binds about 75% of shrimp-specific IgE [3].

Currently, experimental data relating to aggregate size and
structure, and the effect of the flexibility of the Pen a 1
molecule on aggregation, is not yet readily available. However,
a theoretical model can be created that fits a set of cell degran-
ulation data to gain insight into the relationship between the
processes of degranulation and antigen-antibody aggregation.

The researcher modeled the experimental dose-response
data using a simple rule-based model written in the BNGL
language and implemented in the stochastic simulator NFsim
in which free allergens are captured by receptors and receptors
are cross-linked by Pen a 1 molecules. The “dose” in these
experiments refers to the concentration of Pen a 1, and the
“response” refers to the percent secretion corresponding to
each dose of Pen a 1.

II. CONTRIBUTIONS

The contributions of this work are as follows:

1. A biological rule-based model was developed for simu-
lating the process of IgE-FceRI receptor cross-linking via the
binding of the IgE antibodies to the shrimp allergen Pen a 1.

2. A measure of aggregation was identified for the rule-
based model that fits the experimental cell degranulation data
well, assuming a directly proportional relationship between
degranulation and aggregation.

3. The effect of changing the parameters of the rule-based
model on the model output was demonstrated for various doses
of Pen a 1.

4. Parameter scanning was used to fit the output of the
rule-based model to the experimental cell degranulation data
provided by our collaborators.

III. RELATED WORK
A. Rule-Based Modeling

Biological signaling systems are often comprised of macro-
molecules that can exist in a large number of functionally dis-
tinct states. This number scales exponentially with the amount
of modification possibilities [5]. One problem that arises when
modeling these systems is the specification problem, i.e. how
to specify such a large system.

One solution is implicit specification, which involves the
coarse-graining of sets of reactions and parameters into rules;
the only explicitly specified features in a reaction rule are
those which affect the reaction. Rules define the conditions for

molecular transformations and interactions, and are associated
with rate laws [1]. Some rules define multiple reactions, which
means that all of these reactions are associated with the same
rate law. The rules can usually be specified independently.
Rule-based specification methods include Kappa-calculus [6],
BioNetGen [7], ANC [8], and ML-Rules [9]. The Simmune
project and the SSC allow the specification of molecules
within spatial regions of arbitrary geometries [10].

The rule-based methods can be population-based, particle-
based, or hybrid. Population-based methods include ODE/PDE
numerical integration as well as the stochastic Gillespie algo-
rithm. In these methods, the application of a rule changes the
size of one of the populations, each of which consists of all
molecules that share the same state and same species. The
system state space can be very large, so methods to reduce it
have been introduced [5].

Particle-based rule evaluation involves tracking individual
particles (molecules and molecular complexes) through the
simulation [1]. This is a network-free method; at any time
point, only the existing particles, their states, and the possi-
ble reactions for the existing particles are necessary. Spatial
particle-based methods include an explicit specification of
space, and include SRSim [11] and MCell [12].

Rule-based modeling was used to model cell degranulation
in response to Pen a 1 in another work [13]. The differences
between these models are described in Section V-B. Also, this
study is different from the previous study in its inclusion of an
analysis of how the model parameters affect the model output.

B. Experimental Methods

Nanoprobe labeling and transmission electron microscopy
(TEM) of cell membranes are used to study aggregation.
Methods for the spatial analysis of these nanoprobes, including
statistical analysis of clustering, were developed [14]. Quan-
tum dot (QD)-IgE probes that bind FceRI have been used
to study the mobility of receptors by single-particle tracking
[15]. The kinetics of DNP-BSA binding to IgE has been
studied by observing fluorescence quenching [16], and the data
was analyzed using a mathematical model in which the IgE
binding sites are transiently exposed, allowing binding and
cross-linking to occur.

IV. METHOD
A. Cell Degranulation Experiments

Experiments were performed by collaborators [13] to deter-
mine the percent secretion of cells in response to the presence
of Pen a 1. In these experiments, the shrimp allergen Pen a 1
is used to initiate receptor cross-linking and stimulate degran-
ulation. Receptor cross-linking refers to two or more antibody-
receptor complexes binding to a single antigen molecule.
Degranulation is the secretion of chemicals such as histamine
from the granules (secretory vesicles) of a cell. The “dose” in
these experiments refers to the concentration of Pen a 1, and
the “response” refers to the percent secretion corresponding to
the dose of Pen a 1.



The experiments were conducted in wells each having 0.32
cm? of surface area. The cells used in the experiment were
human RBL cells created using gene editing. Initially, approx-
imately 34,000 cells were plated the day prior to experiment.
The number of cells per well at the time of experiment was
measured in two cell count experiments; the average of these
two values is 43,063 and is the number used in our calculations
of the number of molecules per cell. The volume of media,
which contained the allergen-specific IgE, per well was 100
ul.

For each experiment, the cells were primed with allergen-
specific IgE for two hours, and Pen a 1 molecules were
added at various concentrations. Experiments were performed
in which each well contains 15 ng/mL, 30 ng/mL, 60 ng/mL,
and 120 ng/mL of tropomyosin specific IgE. For each IgE
concentration, the concentration of Pen a 1 molecules was
varied from 0.0001 ng/mL to 10,000 ng/mL.

The percent secretion was measured at each order of mag-
nitude of the Pen a 1 concentration. The percent secretion
is defined as the amount of secretion observed divided by
the total secretion possible and multiplied by 100. The total
secretion possible is the total amount of secretory granule
inside of the cells, which was measured by lysing the cells and
measuring the total granule content. Secretion is measured by
observing the number of secretory granules released by cells
in response to cross-linking of cell receptors.

B. Biological Rule-Based Model

The researcher applied a biological rule-based model written
in the BioNetGen Language (BNGL) and implemented in the
stochastic simulator NFsim to analyze a set of data obtained
from cell degranulation experiments. (The code for this model
is presented in the Appendix of this paper.) After perform-
ing initial tests of a number of aggregation measures, the
researcher determined that one measure, the average aggregate
size, fits well to the experimental dose-response curve. The
researcher defines the average aggregate size as the total
number of receptors in aggregates divided by the total number
of aggregates, where an aggregate is defined as any cluster of
bound molecules containing two or more receptors.

The researcher used a model in which Pen a 1 has six
binding sites that are specific to IgE. Since Pen a 1 has five
main binding regions per strand, a six-site model implies that
only three of those binding regions are being consistently
bound. This may be due to the other two binding regions being
less IgE-specific or steric effects causing blockage of other
available binding sites. It should be noted that earlier studies
of Pen a 1 aggregate size distributions using a 3D rigid-body
Monte Carlo method yielded six as the aggregate size with the
greatest probability of occurrence at full model resolution for
three energy-minimized conformations of Pen a 1 [17], [18],
[19].

The researcher used a simple non-geometric method to
model the experimental data in order to help develop intuition
about antigen-antibody aggregate structure. The biological
rule-based model contains a set of rules in which free allergens

are captured by receptors and receptors are cross-linked by
Pen a 1 molecules. In this model, it is assumed that each
Pen a 1 molecule is a dimer with six binding sites, with no
steric effects. There are three rules: (1) a rule in which a free
(unbound) Pen a 1 molecule binds to a receptor, (2) a rule in
which two receptors are cross-linked by a Pen a 1 molecule,
and (3) a rule in which an allergen-IgE bond dissociates (see
Table I).

TABLE I
TABLE SHOWING THE RULES AND ASSOCIATED RATE CONSTANTS FOR
THE RULE-BASED MODEL ASSUMING SIX BINDING SITES PER PEN A 1
MOLECULE. T REPRESENTS A PEN A 1 MOLECULE, E REPRESENTS AN
UNBOUND BINDING SITE ON THE PEN A 1 MOLECULE, AND IGEg
REPRESENTS A BINDING SITE BOUND TO AN IGE ANTIBODY.

Rule Reaction Rate
Number Rule Constant
(1) T(EEEEEE) + IgE — T(IgEg.E.EE,EE) kry
2)  T(gEg.B) + IgE — T(gEp.IgEp) Kzt
3) T(gEg) — T(E) + IgE kr1

The forward rate constant k1, which is the rate associated
with the first rule, and the cross-linking factor z factor, which
is related to the rate associated with the second rule such that
kz1 = zfactor-kysy, are used as free parameters in fitting. It
should be noted that the binding sites on a Pen a 1 molecule
become more accessible once the molecule binds to a receptor,
as the act of binding anchors the molecule close to the cell
surface and increases the probability that other binding sites
on the Pen a 1 molecule will bind to other receptors. This
explains why k;; must be greater than k. The dissociation
rate k,1 is fixed at KD1-ky; s=! where KD1 = 10"2M.

In parallel with the cell degranulation experiments, the
researcher modeled cells that were primed with 15 ng/mL,
30 ng/mL, 60 ng/mL, and 120 ng/mL of tropomyosin specific
IgE. The number of IgE per cell was obtained from quantifying
experimental fluorescence data using flow cytometry [13]. For
each IgE concentration, the concentration of Pen a 1 molecules
was varied from 0.0001 ng/mL to 10,000 ng/mL. Based on
these concentrations and constant parameters derived from
the cell degranulation experiments (see Table II for these
parameter values), the number of Pen a 1 molecules per cell
was calculated for use in the rule-based model (see Table III
for the number of IgE used in this model and see Table IV
for the number of Pen a 1 molecules used in this model).

TABLE I
TABLE SHOWING CONSTANT PARAMETERS FOR THE RULE-BASED MODEL.

43063
100 puL

Number of cells per well
Volume of media per well

For each Pen a 1 dose, 20 model runs were performed.
A single cell or a fraction of a cell was simulated in each
model run. Each run took 60 seconds of physical time, as
preliminary tests showed that this amount of time is adequate
for the system to reach equilibrium. One hundred time steps
were used for each run. The computational time of each run



TABLE III
TABLE SHOWING THE CONCENTRATIONS OF IGE AND THE
CORRESPONDING NUMBER OF IGE PER CELL FOR THE RULE-BASED
MODEL.

IgE concentration (ng/mL)  Number of IgE per cell

15 324
30 716
60 1211
120 2692
TABLE IV

TABLE SHOWING THE CONCENTRATIONS OF PEN A 1 AND THE
CORRESPONDING NUMBER OF PEN A 1 PER CELL FOR THE RULE-BASED
MODEL.

Pen a 1 concentration (ng/mL.)  Number of Pen a 1 per cell

0.0001 2

0.001 19

0.01 194

0.1 1943

1 19426

10 194257
100 1942567
1000 19425673
10,000 194256735

was on the order of seconds to minutes depending on the
number of molecules in the model being simulated. The runs
were performed on a laptop running the Windows 10 Home
operating system with an Intel Core i7-7500U CPU at 2.70
GHz and 16 GB of RAM.

V. EXPERIMENTS, RESULTS, AND DISCUSSION
A. Varying Model Parameters

Firstly, the researcher wants to demonstrate how the curve
of the biological rule-based model changes as the model
parameters vary. To this end, the researcher performed two
experiments: one experiment in which x factor is varied while
kyq is constant, and one experiment in which kyq is varied
while z factor is constant. It should be noted that, in the
figures presenting the dose-response curves, continuous lines
were added to the data points for the purpose of visualizing
the trends in the data.

For the experiment in which z factor is varied, the re-
searcher tested a model with 120 ng/mL allergen-specific IgE
and ks = 108M —1s~1. The researcher ran the model for three
different values of xfactor: 1000, 10000, and 100000. The
resulting dose-response curves are shown in Fig. 1. It can be
observed that the peak of the curve grows higher and more
defined as x factor increases. The location of the peak along
the x-axis remains the same if only = factor changes.

For the experiment in which ky; is varied, the researcher
tested a model with 120 ng/mL allergen-specific IgE and
x factor = 10000. The researcher ran the model for two
different values of kgi: 1050 ~1s™! and 10°M ~'s~!. The
resulting dose-response curves are shown in Fig. 2. It can be
observed that the peak of the curve shifts to lower doses as k ¢
increases. It can also be observed that the bell-shaped portion
of the curve grows wider as ky; increases.
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Fig. 1. Average aggregate size generated by the rule-based model for

x factor = 1000 (solid blue line), x factor = 10000 (dashed red line), and
x factor = 100000 (dotted yellow line) with the tropomyosin concentration
on the x-axis, for 120 ng/mL allergen-specific IgE and k1 = 106 M—1s 1,
The error bars represent the standard error for 20 runs of NFsim.
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Fig. 2. Average aggregate size generated by the rule-based model for ks
=105M 15~ (solid blue line) and k1 = 1090 ~1s~1 (dashed red line)
with the tropomyosin concentration on the x-axis, for 120 ng/mL allergen-
specific IgE and x factor = 10000. The error bars represent the standard
error for 20 runs of NFsim.

B. Fitting Model to Experimental Data

For simplicity, the researcher made the assumption that the
measure of aggregation used in this model, namely the average
aggregate size, is directly proportional to the experimental
cell degranulation data. The researcher sought to find fitting
parameters for the model that would result in a reasonable fit
of the model output to the experimental cell degranulation
data. To this end, the researcher tested xfactor values of
1, 10, 100, 1000, 10000, and 100000, and kg values of
1, 10, 100, 10%, and 10°M~1's~!. For the fitting tests, the
researcher fixed the allergen-specific IgE concentration at 120
ng/mL. The researcher found that ky; = 10°M~'s™! and
x factor = 10000 yielded the best fit of the model output to
experimental data. The researcher used these model parameters
to generate the model output for three other allergen-specific
IgE concentrations: 60 ng/mL, 30 ng/mL, and 15 ng/mL.

It should be noted that a fraction of a cell, rather than a
whole cell, was modeled for some runs due to computational



TABLE V
TABLE SHOWING THE CELL FRACTION USED IN THE RULE-BASED MODEL
FOR EACH ALLERGEN-SPECIFIC IGE AND PEN A 1 CONCENTRATION.

Pen a 1 Concentration (ng/mL)  IgE Concentration (ng/mL)

120 60 30 15

0.0001 1.0 1.0 1.0 1.0
0.001 1.0 1.0 1.0 1.0

0.01 05 1.0 10 1.0

0.1 0.1 10 10 1.0

1 0.1 05 1.0 1.0

10 0.1 05 10 1.0
100 0.1 05 0.5 0.5

1000 0.05 0.05 0.05 0.05
10000 0.005 0.0050.005 0.005
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Fig. 3. Average aggregate size generated by the rule-based model (dashed
lines) plotted with the experimental percent secretion curves (solid lines) with
the tropomyosin concentration on the x-axis, for 120 ng/mL allergen-specific
IgE. For this model, k1 = 10°M ~'s~! and z factor = 10000. The error
bars for the model represent the standard error for 20 runs of NFsim. The
error bars for the experimental data represent the standard deviation for two
experiments.

limitations. For ease of reproducibility, the cell fraction used
for each model is displayed in Table V. (A whole cell
corresponds to a cell fraction of 1.0.)

The researcher plotted the model output and experimental
data on the same plot for comparison. (See Fig. 3 for 120
ng/mL allergen-specific IgE, Fig. 4 for 60 ng/mL allergen-
specific IgE, Fig. 5 for 30 ng/mL allergen-specific IgE, and
Fig. 6 for 15 ng/mL allergen-specific IgE.)

From these plots, it can be observed that the rule-based
model output correlates well with experimental data in regards
to the non-zero values of the percent secretion at low doses of
tropomyosin, which is an improvement over previous work,
which predicted zero secretion at the lowest tropomyosin
doses. The model also generally captures the shape of the en-
tire experimental data curve. Specifically, the model correctly
predicts that the percent secretion curve gradually rises to its
peak from a non-zero value as the tropomyosin dose increases
before tapering off. In contrast, the model used in previous
work [13] predicts that the curve rises more rapidly to its
peak from a value of zero. In particular, the model output
for 60 ng/mL allergen-specific IgE corresponds excellently
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Fig. 4. Average aggregate size generated by the rule-based model (dashed
lines) plotted with the experimental percent secretion curves (solid lines) with
the tropomyosin concentration on the x-axis, for 60 ng/mL allergen-specific
IgE. For this model, ky; = 10°M~1s~1 and z factor = 10000. The error
bars for the model represent the standard error for 20 runs of NFsim. The
error bars for the experimental data represent the standard deviation for two
experiments.
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Fig. 5. Average aggregate size generated by the rule-based model (dashed
lines) plotted with the experimental percent secretion curves (solid lines) with
the tropomyosin concentration on the x-axis, for 30 ng/mL allergen-specific
IgE. For this model, ky; = 10°M~1s~1 and z factor = 10000. The error
bars for the model represent the standard error for 20 runs of NFsim. The
error bars for the experimental data represent the standard deviation for two
experiments.

with experimental data (see Fig. 4). It should be noted that
the model output for 15 ng/mL allergen-specific IgE does
not seem to fit the experimental data as closely as the other
models (see Fig. 6). However, the error of the experimental
data is particularly large for the 15 ng/mL IgE concentration
relative to the model output, meaning there is high variability
between the results of the two replicate experiments relative
to the model output.

These findings indicate that the measure of aggregation used
in this model, namely the average aggregate size measured at
equilibrium, may correspond with cell degranulation behavior
more closely than the measure used in previous work, namely
the time-averaged number of IgE receptors in aggregates.
At the very least, analyzing the average aggregate size at
equilibrium may provide us with another clue to understanding
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Fig. 6. Average aggregate size generated by the rule-based model (dashed
lines) plotted with the experimental percent secretion curves (solid lines) with
the tropomyosin concentration on the x-axis, for 15 ng/mL allergen-specific
IgE. For this model, ky; = 109M ~1s~1 and z factor = 10000. The error
bars for the model represent the standard error for 20 runs of NFsim. The
error bars for the experimental data represent the standard deviation for two
experiments.

the relationship between aggregation and cell degranulation.

VI. CONCLUSION

The researcher found that the biological rule-based model
presented in this paper, which simulates the process of antigen-
antibody aggregation via the crosslinking of IgE-FceRI re-
ceptors, generated output that fits reasonably well to the
experimental cell degranulation data provided by collaborators.
One idea for future work is to continue to improve this
model to increase its accuracy for various concentrations of
IgE and Pen a 1 molecules. This model assumes a directly
proportional relationship between the experimental data and
model observable. Another idea for future work is to develop
a model without this assumption. This might be accomplished
by calculating a different model observable by taking into
the account the effect of intracellular events that occur after
aggregation but before cell secretion.

Although Pen a 1 has more than six IgE binding sites, the
researcher limited the scope of this project to a six-site model
based on earlier computational work. Future work could entail
evaluating similar models that have more than six binding
sites, as the specificity of these sites is unknown.

VII. APPENDIX

A. BNGL code for biological rule-based model used in the
study.

# BEFORE YOU BEGIN:

# Make sure that all of the parameter
# values are set correctly for the

# model you want to test.

# These parameters include:

# £ - cell fraction

# Pen_a_1_copyNum - number of Pen a 1
# molecules

# IgE_copyNum - number of IgE
# crosslinking factor - xfactor

begin model

# A model for Pen a 1 interaction with
# allergen-specific IgE

begin parameters

# fraction of cell to be considered in a
# (stochastic) simulation
# Obtain from Table V

f 1.0 # [=] dimensionless, 0<f<=1
# Avogadro constant
NA 6.02214e23 # [=] molecules per mol
# volume of extracellular fluid per

# (RBL-2H3) cell

# multiplied by the cell fraction

# 100 uL of media per well divided by
# 43,063 cells per well

Vecf 2.3e-9xf # [=] L per cell

# copies of Pen a 1 per cell

# Obtain from Table IV

# multiplied by the cell fraction
Pen_a_1_copyNum 19xf

# copies of allergen-specific IgE per cell
# multiplied by the cell fraction

# Obtain from Table III

IgE_copyNum 2692xf

# crosslinking factor
xfactor 10000.0

# rate constants for IgE interaction with
# an epitope

KD1_nM 10.0 # [=] nM
KD1=KD1l nMx1.0e-9 # [=] M
kfl Ms 1.0e+9 # [=] /M/s

kfl=kfl_Ms/ (NAxVecf)

# [=] /(molecule/cell)/s
kr1=KD1lxkfl Ms # [=] /s
kxl=xfactorxkfl Ms/ (NAxVecf)
# [=] /(molecule/cell)/s

end parameters
begin molecule types

Pen_a_l(e,e,e, e, e, e)



IgE (Fab, Fab)
end molecule types
begin seed species

Pen_a_l(e,e,e,e,e,e) Pen_a_1l_copyNum
IgE (Fab,Fab) IgE_copyNum

end seed species
begin observables
# total number of receptors
# (1 Fc receptor per IgE)

Molecules FcRtot IgE()

# number of unclustered receptors
Species FcR1l IgE==

more
receptors)
Species n_agg_gtl IgE>1

H= o o 3 o3

end observables
begin functions
# average receptor aggregate size = (# of

# receptors in clusters)/n_agg_gtl
avg_agg_size ()= (FcRtot-FcR1l) /n_agg_gtl

end functions
begin reaction rules

# capture of free allergen

# IgE binds an epitope in any region
Pen_a_l(e,e,e, e, e, e)+IgE (Fab)->\
Pen_a_l(e!l,e,e,e, e,e).IgE(Fab!l) kfl

# allergen-mediated receptor crosslinking
Pen_a_1(e!'+,e)+IgE (Fab)->\
Pen_a_l(e!+,e!l) .IgE(Fab!l) kxl

# dissociation of antigen-—-antibody bonds
Pen_a_1(e!l) .IgE(Fab!l)->\
Pen_a_1(e)+IgE (Fab) krl

end reaction rules

end model

#ACTIONS

simulate_nf ({suffix=>"test", complex=>1,\
gml=>2000000000,print_functions=>1,\
t_start=>0,t_end=>60,n_steps=>100})

number of allergen-induced receptor
aggregates
(i.e., number of clusters containing 2 or
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