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Abstract—Previously, we proposed a method for incorporating
molecular geometry in a biological rule-based model by encoding
molecular curvature into the rules and associated binding rate
constants. We combined this method with a 3D rigid-body Monte
Carlo simulation to model antigen-antibody aggregation. In this
work, we use our geometric rule-based method to develop a
model for predicting the output of the full-resolution Monte Carlo
simulation given the output of lower resolution simulations. The
purpose of this predictive model is to reduce the computational
cost of the Monte Carlo simulation. We develop this model
by first choosing a rule set for each molecular geometry and
varying only the binding rate constant for each Monte Carlo
resolution, and then fitting the resulting data to a function. We
examine the calculation time needed for each predictive model
to demonstrate how this model is more efficient than running a
full-resolution simulation. We find that this method can reduce
the computational time of the Monte Carlo simulation by up to
20%.

Index Terms—rule-based modeling, geometric modeling,
molecular geometry, Monte Carlo simulation, computational
efficiency

I. INTRODUCTION

The allergic response is produced by the release of immune
mediators by mast cells and basophils [1]. This process, in
turn, is initiated by the aggregation of antigens and IgE-FcεRI
antibody-receptor complexes [1]. Computational modeling of
antibody-antigen aggregate formation as well as the size and
structure of these aggregates is an important tool for greater
understanding of the allergic response. Allergens can possess
multiple conformations with different geometries, which may
affect aggregate structure and size. It is known that the allergen
fold affects the IgE reactivity of its epitopes, or binding sites
[2]. Consequently, the incorporation of molecular geometry
into aggregation models can more accurately capture details
of the aggregation process, and may lead to insights into
how geometry affects aggregate formation. However, it is
challenging to simulate aggregation due to the computational
cost of simulating large molecules. Methods to geometrically
model antibody aggregation inspired by rigid body robotic
motion simulations have previously been developed; however,
high computational cost mandates that the resolution of the
3D molecular models be reduced, which affects the results of
the simulation. Rule-based modeling can be used to model
aggregation with low computational cost, but traditional rule-

based modeling approaches do not include details of molecular
geometry.

In previous work, we proposed a novel implementation
of rule-based modeling that encodes details of molecular
geometry into the rules and the binding rate constant asso-
ciated with each rule [3], [4]. We then performed a study
of antigen-antibody aggregation using our proposed method
combined with a previously developed 3D rigid-body Monte
Carlo simulation.

We first simulated the binding of IgE antibodies bound to
cell surface receptors FcεRI to various binding regions of
the allergen Pen a 1 using the aforementioned Monte Carlo
simulation, and we analyzed the distribution of the sizes
of the aggregates that form during the simulation [3], [4].
Then, using our novel rule-based approach, we optimized a
rule-based model according to the geometry of the Pen a 1
molecule and the data from the Monte Carlo simulation.
In particular, we used the distances between the binding
regions of the Pen a 1 molecule to optimize the rules and
associated binding rate constants. The optimized rule-based
models provide information about the average steric hindrance
between binding regions and the probability that IgE-FcεRI
receptor complexes will bind to these regions. In addition, the
optimized rule-based models provide a means of quantifying
the variation in aggregate size distribution that results from
differences in molecular geometry.

We performed this procedure for seven resolutions and three
molecular conformations of Pen a 1 [3], [4]. We then analyzed
the impact of resolution and conformation on the aggregate
size distribution and on the optimal rule-based model.

In this work, we created models to enable the prediction of
Monte Carlo results at full model resolution by only running
the simulation at lower resolutions. If the number of low-
resolution simulations is small enough, the computational time
required to obtain results will be less than running a single set
of full-simulation calculations. To achieve this, we analyzed
trends in the variation of the parameters of our optimized rule-
based models with resolution. We first fixed the rule set and
varied only the binding rate constant for each resolution, and
then fitted the resulting rate constant versus resolution data to a
function. We then used that function to predict the appropriate
rate constant for a full-resolution model. Finally, we used this
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rate constant in our geometric rule-based model, which we ran
to obtain the aggregate size distribution, which is the result in
which we are most interested.

The main contributions of this work are as follows:
1) Outline a method for creating a model that can be used

to predict the results of a 3D full-resolution rigid-body
Monte Carlo simulation by running lower resolution
Monte Carlo simulations.

2) Assess the computation time required for each predictive
model to show that these predictive models can save
computational time.

II. RELATED WORK

Our work builds on computational methods for modeling
molecular geometry in biochemical processes, as well as
experimental methods to study IgE antibody binding behavior.

A. Rule-Based Modeling

Biological signaling systems are often comprised of macro-
molecules that can exist in a large number of functionally dis-
tinct states. This number scales exponentially with the amount
of modification possibilities [5]. One problem that arises when
modeling these systems is the specification problem, i.e. how
to specify such a large system.

One solution is implicit specification, which involves the
coarse-graining of sets of reactions and parameters into
“rules”; the only explicitly specified features in a reaction
rule are those which affect the reaction. Rules define the
conditions for molecular transformations and interactions, and
are associated with rate laws [6]. Some rules define mul-
tiple reactions, which means that all of these reactions are
associated with the same rate law. The rules can usually
be specified independently. Rule-based specification methods
include Kappa-calculus [7], BioNetGen [8], ANC [9], and
ML-Rules [10]. The Simmune project and the SSC allow the
specification of molecules within spatial regions of arbitrary
geometries [11].

The rule-based methods can be population-based, particle-
based, or hybrid. Population-based methods include ODE/PDE
numerical integration and the stochastic Gillespie algorithm.
In these methods, the application of a rule changes the size of
one of the populations, each of which consists of all molecules
that share the same state and same species. The system state
space can be very large, so methods to reduce it have been
introduced [5].

Particle-based rule evaluation involves tracking individual
“particles” (molecules and molecular complexes) through the
simulation [6]. This is a network-free method; at any time
point, only the existing particles, their states, and the possi-
ble reactions for the existing particles are necessary. Spatial
particle-based methods include an explicit specification of
space, and include SRSim [12] and MCell [13].

Our method differs from traditional approaches to rule-
based modeling in that the rules used in our method are
constrained by molecular geometry.

B. Geometric Molecular Modeling

The spatial simulation software SRSim [12] is a rule-based
modeling method that allows for the specification of molecule
geometry. SRSim integrates rule-based modeling, molecu-
lar dynamics, and a stochastic, diffusing-particle simulator.
Molecular geometry is provided by the user via data files.
Our proposed method is different in that it is a purely rule-
based ODE model that does not require any additional data
files to run, as the molecular geometry is encoded into the
rules themselves. In addition, our method only requires the
BioNetGen software to run.

The stochastic, particle-based Meredys software [14] uses
Brownian dynamics to simulate reaction-diffusion systems at
the mesoscopic level. It requires the specification of details
such as molecule positions, molecular geometry, reaction
site positions, and reaction types. Our rule-based method is
population-based and only requires the distances between pairs
of binding regions on a single antigen molecule to create the
model.

Computational methods for modeling two-molecule ligand-
receptor docking simulate systems on a smaller scale than
those studied using our method. Our method uses more realis-
tic geometric molecular models than do existing methods for
self-assembly of molecular structures, such as those employing
simple bead models [15].

C. Experimental Methods

Nanoprobe labeling and transmission electron microscopy
(TEM) of cell membranes are used to study cell signaling.
Methods for the spatial analysis of these nanoprobes, including
statistical analysis of clustering, were developed in [16].
Quantum dot (QD)-IgE probes that bind FcεRI have been used
to study the mobility of receptors by single-particle tracking
[17]. The kinetics of DNP-BSA binding to IgE has been
studied by observing fluorescence quenching [18], and the data
was analyzed using a mathematical model in which the IgE
binding sites are transiently exposed, allowing binding and
cross-linking to occur.

III. METHODS

Our cutoff distance model has two variable parameters: the
cutoff distance range, which corresponds to the rule set, and
the rate constant kf2. For the purpose of creating a model
that can be used to predict the aggregate size data of higher
resolutions given only lower resolution data, it is helpful to
fix one parameter and only allow the other parameter to vary.
Then, a trend can be more easily observed.

Due to the difficulty of fixing kf2 at a constant value for all
resolutions and still being able to obtain rule-based models that
fit the Monte Carlo data well, we have fixed the cutoff distance
range for all resolutions and allowed kf2 to vary. The rate
constant kf2 was optimized using an adaptive method based
on the Metropolis algorithm that minimized the difference
between the Monte Carlo output and the output of the rule-
based model. We have chosen to fix the cutoff distance range
for all resolutions at the optimal range for the 25% reduced



resolution. This range is 5.6-6.2 nm for the native type, 5.8-6.0
nm for the S-shaped type, and 6.8-8.6 nm for the U-shaped
type. Since our goal is to be able to predict the results of
the 0% reduced resolution, the rule set of the 25% reduced
resolution strikes a balance between allowing good fits to the
0% reduced Monte Carlo data and still allowing reasonable fits
to the lower resolution Monte Carlo data. The aggregate size
data for the 0% reduced resolution, along with the optimal
rate constant versus resolution data, are shown in Figure 1
for the native type Pen a 1, Figure 2 for the S-shaped type,
and Figure 3 for the U-shaped type. These data were fitted to
exponential functions.

Ultimately, we want to develop data sets for fitting our
models using only rate constant versus resolution data for
lower resolutions, so that the computationally costly higher
resolution Monte Carlo simulations do not need to be run. For
this reason, we developed models using a method similar to
that used for the models described above, with the exception
that the exponential functions are fitted to the data sets with
the following data points omitted: 0% reduced data; 0% and
25% reduced data; 0%, 25%, and 90% reduced data; 0%, 25%,
and 65% reduced data; and 0%, 25%, 65%, and 90% reduced
data.

A possible source of error is the Monte Carlo simulation
data due to the somewhat small number of runs used to fit our
predictive exponential functions and the Monte Carlo data not
always fitting the expected trend of higher aggregate sizes with
higher percent reduction in resolution (see Figure 2). Another
source of error is the fitted function itself, which provides a
predicted rate constant that is different from the actual rate
constant.

IV. RESULTS AND DISCUSSION

A. Results and Model Accuracy

For comparison purposes, Figures 1, 2, and 3 display the
rule-based modeling histogram data corresponding to both the
actual optimized rate constant for the 0% reduction Monte
Carlo data and the rate constant predicted by the exponential
function to fit the 0% reduction data. We observe that these
models accurately predict the optimized aggregate size distri-
bution.

The models that omit only the 0% reduced data, along
with the corresponding aggregate size histogram predicted for
the 0% reduced resolution, are shown in Figure 4 for the
native type, Figure 5 for the S-shaped type, and Figure 6 for
the U-shaped type. The aggregate size distributions predicted
by these models are similar to the optimized distributions,
although the predicted distribution for the native type shows a
significant difference in the aggregate size probability values.
Our time analysis (Section IV-B) shows that these models are
computationally expensive.

The aggregate size histogram predicted for the 0% reduced
resolution for the models that omit the 0%, 25%, and 90%
reduced data are shown in Figure 7 for the native type, Figure 8
for the S-shaped type, and Figure 9 for the U-shaped type. We
observe that these models continue to accurately capture the

optimized aggregate size distribution, although there is some
difference in the probability values. Our time analysis (Section
IV-B) shows that these models are computationally expensive.

The next two sets of models that we will discuss are
especially important since our time analysis showed that the
total run times for these models are less than that of the full-
resolution model.

The aggregate size histogram predicted for the 0% reduced
resolution for the models that omit the 0%, 25%, and 65%
reduced data are shown in Figure 10 for the native type,
Figure 11 for the S-shaped type, and Figure 12 for the U-
shaped type. We observe that these models accurately capture
the location of the first and second most probable aggregate
sizes, and the probability values are closer to that of the Monte
Carlo model than the previously described models.

The aggregate size histogram predicted for the 0% reduced
resolution for the models that omit the 0%, 25%, 65%, and
90% reduced data are shown in Figure 13 for the native type,
Figure 14 for the S-shaped type, and Figure 15 for the U-
shaped type. Similarly to the previously described model, We
observe that these models accurately capture the location of
the first and second most probable aggregate sizes, and the
probability values are reasonably close to that of the Monte
Carlo model.

Optimized Values

Predicted Values

Figure 1. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the native Pen a 1
for the optimized rate constant (top left) and predicted rate constant (bottom
left). Rate constant versus resolution data for the native Pen a 1 conformation
(right). The standard error of the mean was calculated to obtain the error
bars for the Monte Carlo model (blue). For these plots, the cutoff distance
range has been fixed at 5.6-6.2 nm (see rule set 2 in the Appendices), which
was found to be the optimal range for the 25% reduced resolution of the
native type Pen a 1. The data points (X-shaped markers) were fitted to an
exponential function (boxed equation) which is plotted as a solid line. The
equation constants are A=0.0066, B=0.0027, C=0.0004, and D=0.0462.



Optimized Values

Predicted Values

Figure 2. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the S-shaped
Pen a 1 for the optimized rate constant (top left) and predicted rate constant
(bottom left). Rate constant versus resolution data for the S-shaped Pen a 1
conformation (right). The standard error of the mean was calculated to obtain
the error bars for the Monte Carlo model (blue). For these plots, the cutoff
distance range has been fixed at 5.8-6.0 nm (see rule set 6 in the Appendices),
which was found to be the optimal range for the 25% reduced resolution of
the S-shaped type Pen a 1. The data points (X-shaped markers) were fitted
to an exponential function (boxed equation) which is plotted as a solid line.
The equation constants are A=0.0025 and B=0.0253.

Optimized Values

Predicted Values

Figure 3. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the U-shaped
Pen a 1 for the optimized rate constant (top left) and predicted rate constant
(bottom left). Rate constant versus resolution data for the U-shaped Pen a 1
conformation (right). The standard error of the mean was calculated to obtain
the error bars for the Monte Carlo model (blue). For these plots, the cutoff
distance range has been fixed at 6.8-8.6 nm (see rule set 9 in the Appendices),
which was found to be the optimal range for the 25% reduced resolution of
the U-shaped type Pen a 1. The data points (X-shaped markers) were fitted
to an exponential function (boxed equation) which is plotted as a solid line.
The equation constants are A=0.0048 and B=0.0204.

Figure 4. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the native Pen a 1
for the predicted rate constant (left). Rate constant versus resolution data for
the native Pen a 1 conformation, omitting the 0% reduction data (right). The
standard error of the mean was calculated to obtain the error bars for the
Monte Carlo model (blue). For these plots, the cutoff distance range has been
fixed at 5.6-6.2 nm (see rule set 2 in the Appendices), which was found to be
the optimal range for the 25% reduced resolution of the native type Pen a 1.
The data points (X-shaped markers) were fitted to an exponential function
(boxed equation) which is plotted as a solid line. The equation constants are
A=7.539e-11, B=0.1875, C=0.004443, and D=0.02138.

Figure 5. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the S-shaped
Pen a 1 for the predicted rate constant (left). Rate constant versus resolution
data for the S-shaped Pen a 1 conformation, omitting the 0% reduction data
(right). The standard error of the mean was calculated to obtain the error
bars for the Monte Carlo model (blue). For these plots, the cutoff distance
range has been fixed at 5.8-6.0 nm (see rule set 6 in the Appendices), which
was found to be the optimal range for the 25% reduced resolution of the
S-shaped type Pen a 1. The data points (X-shaped markers) were fitted to an
exponential function (boxed equation) which is plotted as a solid line. The
equation constants are A=0.002491 and B=0.02494.

Figure 6. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the U-shaped
Pen a 1 for the predicted rate constant (left). Rate constant versus resolution
data for the U-shaped Pen a 1 conformation, omitting the 0% reduction data
(right). The standard error of the mean was calculated to obtain the error
bars for the Monte Carlo model (blue). For these plots, the cutoff distance
range has been fixed at 6.8-8.6 nm (see rule set 9 in the Appendices), which
was found to be the optimal range for the 25% reduced resolution of the
U-shaped type Pen a 1. The data points (X-shaped markers) were fitted to an
exponential function (boxed equation) which is plotted as a solid line. The
equation constants are A=0.005139 and B=0.0197.



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12

P
ro

b
a
b

il
it

y

Aggregate size

0% Reduction

Figure 7. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the native Pen a 1
for the predicted rate constant, omitting the 0%, 25%, and 90% reduction data.
The standard error of the mean was calculated to obtain the error bars for
the Monte Carlo model (blue). The cutoff distance range has been fixed at
5.6-6.2 nm (see rule set 2 in the Appendices), which was found to be the
optimal range for the 25% reduced resolution of the native type Pen a 1. The
data points were fitted to an exponential function. The equation constants are
A=0.002296 and B=0.029456.
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Figure 8. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the S-shaped
Pen a 1 for the predicted rate constant, omitting the 0%, 25%, and 90%
reduction data. The standard error of the mean was calculated to obtain the
error bars for the Monte Carlo model (blue). The cutoff distance range has
been fixed at 5.8-6.0 nm (see rule set 6 in the Appendices), which was found
to be the optimal range for the 25% reduced resolution of the S-shaped type
Pen a 1. The data points were fitted to an exponential function. The equation
constants are A=0.001332 and B=0.031452.

B. Time Analysis

In previous work, our collaborators measured the run time
of the Monte Carlo simulation for the models with 0%, 50%,
75%, and 90% polygon reduction [19]. They found that the
trend in run time with percentage reduction is linear. We
interpolate this trend to determine the run time for the models
with 25% and 65% polygon reduction, and we extrapolate
to estimate the run time for the model with 95% polygon
reduction. We present the polygon reduction percentages and
their associated run times for a single run in Table I.
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Figure 9. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the U-shaped
Pen a 1 for the predicted rate constant, omitting the 0%, 25%, and 90%
reduction data. The standard error of the mean was calculated to obtain the
error bars for the Monte Carlo model (blue). The cutoff distance range has
been fixed at 6.8-8.6 nm (see rule set 9 in the Appendices), which was found
to be the optimal range for the 25% reduced resolution of the U-shaped type
Pen a 1. The data points were fitted to an exponential function. The equation
constants are A=0.003447 and B=0.023714.
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Figure 10. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the native Pen a 1
for the predicted rate constant, omitting the 0%, 25%, and 65% reduction data.
The standard error of the mean was calculated to obtain the error bars for the
Monte Carlo model (blue). For these plots, the cutoff distance range has been
fixed at 5.6-6.2 nm (see rule set 2 in the Appendices), which was found to be
the optimal range for the 25% reduced resolution of the native type Pen a 1.
The data points were fitted to an exponential function. The equation constants
are A=0.004157 and B=0.022989.

Table I
RUN TIMES FOR A SINGLE RUN OF SEVEN 3D MONTE CARLO MODEL

RESOLUTIONS

Polygon Reduction Percentage Run Time (Hours)
0 20

25 15

50 10

65 7

75 5

90 2

95 1
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Figure 11. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the S-shaped
Pen a 1 for the predicted rate constant, omitting the 0%, 25%, and 65%
reduction data. The standard error of the mean was calculated to obtain the
error bars for the Monte Carlo model (blue). The cutoff distance range has
been fixed at 5.8-6.0 nm (see rule set 6 in the Appendices), which was found
to be the optimal range for the 25% reduced resolution of the S-shaped type
Pen a 1. The data points were fitted to an exponential function. The equation
constants are A=0.001992 and B=0.028116.
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Figure 12. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the U-shaped
Pen a 1 for the predicted rate constant, omitting the 0%, 25%, and 65%
reduction data. The standard error of the mean was calculated to obtain the
error bars for the Monte Carlo model (blue). The cutoff distance range has
been fixed at 6.8-8.6 nm (see rule set 9 in the Appendices), which was found
to be the optimal range for the 25% reduced resolution of the U-shaped type
Pen a 1. The data points were fitted to an exponential function. The equation
constants are A=0.004434 and B=0.021575.

Next, assuming we perform 30 runs for each model resolu-
tion, we calculate the total run time needed for each predictive
model and list this data, along with the run time needed for
a set of 30 full-resolution runs, in Table II. We also include
the percentage change of the run time as compared to a set of
full-resolution runs, which takes 600 hours.

From Table II, we observe that some of the predictive
models are more time-consuming than a set of full-resolution
runs. As this defeats the purpose of the predictive model, we
should use the predictive models that cost less time to create
as long as they provide us with the desired accuracy of results.
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Figure 13. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the native Pen a 1
for the predicted rate constant, omitting the 0%, 25%, 65%, and 90% reduction
data. The standard error of the mean was calculated to obtain the error bars
for the Monte Carlo model (blue). The cutoff distance range has been fixed
at 5.6-6.2 nm (see rule set 2 in the Appendices), which was found to be the
optimal range for the 25% reduced resolution of the native type Pen a 1. The
data points were fitted to an exponential function. The equation constants are
A=0.004106 and B=0.023293.
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Figure 14. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the S-shaped
Pen a 1 for the predicted rate constant, omitting the 0%, 25%, 65%, and 90%
reduction data. The standard error of the mean was calculated to obtain the
error bars for the Monte Carlo model (blue). The cutoff distance range has
been fixed at 5.8-6.0 nm (see rule set 6 in the Appendices), which was found
to be the optimal range for the 25% reduced resolution of the S-shaped type
Pen a 1. The data points were fitted to an exponential function. The equation
constants are A=0.002037 and B=0.026951.

Table II
RUN TIMES FOR PREDICTIVE MODELS AND PERCENTAGE CHANGE FROM

600 HOURS (FOR A SET OF 30 RUNS PER RESOLUTION)

Predictive Model Description Run Time
(Hours)

Percentage
Change

Full resolution 600 0

Only omit 0% reduction 1200 +100

Omit 0% and 25% reduction 750 +25

Omit 0%, 25%, and 90% reduction 690 +15

Omit 0%, 25%, and 65% reduction 540 -10

Omit 0%, 25%, 65%, and 90% reduction 480 -20
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Figure 15. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the 0% reduced resolution of the U-shaped
Pen a 1 for the predicted rate constant, omitting the 0%, 25%, 65%, and 90%
reduction data. The standard error of the mean was calculated to obtain the
error bars for the Monte Carlo model (blue). The cutoff distance range has
been fixed at 6.8-8.6 nm (see rule set 9 in the Appendices), which was found
to be the optimal range for the 25% reduced resolution of the U-shaped type
Pen a 1. The data points were fitted to an exponential function. The equation
constants are A=0.004606 and B=0.020665.

V. CONCLUSIONS

We proposed a method for developing a predictive model
for predicting results for high-resolution Monte Carlo molec-
ular simulations using only lower-resolution Monte Carlo
simulations and a biological rule-based model. We found
that this method can accurately predict the most probable
aggregate sizes of the full-resolution Monte Carlo simulation.
We also found that the computational cost of the Monte Carlo
simulation can be reduced by up to 20% using this method.

Future work could involve investigating the differences we
found between the predictive models for the three conforma-
tions of Pen a 1 that we studied. Our results showed that our
predictive models for the U-shaped type tended to predict the
third most probable aggregate size with significantly greater
accuracy than the models for the native and S-shaped types.
We want to improve our understanding of the cause of this
difference so that we can improve the accuracy of our models.

We can also examine how the number of runs used in the
Monte Carlo simulation affects the output. Furthermore, in
future research, we will use experimental electron microscopy
(EM) data in place of the aggregation data from our Monte
Carlo simulations. Cryo-EM data, which provides information
about molecular geometry, is now becoming available. The
locations of receptor probes in EM images can be used to
estimate receptor clustering. We will also consider the effects
of allergen cross-linking on our geometric rule-based method.
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