
Extending Rule-Based Methods to Model Molecular
Geometry

Brittany Hoard, Bruna Jacobson, Kasra Manavi, Lydia Tapia
Department of Computer Science

University of New Mexico
Albuquerque, New Mexico, 87131

Abstract—Computational modeling is an important tool for
the study of complex biochemical processes associated with
cell signaling networks. However, it is challenging to simulate
processes that involve hundreds of large molecules due to the high
computational cost of such simulations. Rule-based modeling is a
computational method that can be used to model these processes
with reasonably low computational cost, but traditional rule-
based modeling approaches do not include details of molecular
geometry. The incorporation of molecular geometry into biochem-
ical models can more accurately capture details of these processes,
and may lead to insights into how geometry affects the products
that form. Furthermore, geometric rule-based modeling can be
used to complement other computational methods that explicitly
represent molecular geometry in order to quantify binding site
accessibility and steric effects.

In this work, we propose a novel implementation of rule-
based modeling that encodes details of molecular geometry into
the rules and the binding rate constant associated with each rule.
We demonstrate how the set of rules is constructed according
to the curvature of the molecule. We then perform a study of
antigen-antibody aggregation using our proposed method. We
first simulate the binding of IgE antibodies bound to cell surface
receptors FcεRI to various binding regions of the shrimp allergen
Pen a 1 using a previously developed 3D rigid-body Monte
Carlo simulation, and we analyze the distribution of the sizes
of the aggregates that form during the simulation. Then, using
our novel rule-based approach, we optimize a rule-based model
according to the geometry of the Pen a 1 molecule and the
data from the Monte Carlo simulation. In particular, we use the
distances between the binding regions of the Pen a 1 molecule
to optimize the rules and associated binding rate constants. We
perform this procedure for three molecular conformations of
Pen a 1 and analyze the impact of conformation on the aggregate
size distribution and the optimal rule-based model. We find
that the optimized rule-based models provide information about
the average steric hindrance between binding regions and the
probability that IgE-FcεRI receptor complexes will bind to these
regions. In addition, the optimized rule-based models provide a
means of quantifying the variation in aggregate size distribution
that results from differences in molecular geometry.

Keywords—rule-based model; geometric model; allergen-
antibody interactions

I. INTRODUCTION
Computational methods are widely used to study biomolec-

ular interactions due to their complexity. Models which are
constrained by physicochemical principles are useful because
they are based on causality and their parameters can be
measured independently [1], [2]. Models that allow the in-
corporation of site-specific details and that can overcome the
problem of combinatorial complexity are also highly useful for
biomolecular simulations [2]–[4]. One technique that meets

all of the above requirements is rule-based modeling. Rule-
based modeling is a technique for studying the site dynamics
of biomolecular networks [2], [5], which involves representing
biomolecular interactions as local rules. With this method, a
set of rules, each representing multiple reactions and each
associated with a rate law that is assigned to these reactions,
is specified. During simulation, a reaction network is created
from which a set of coupled ordinary differential equations
(ODEs) is derived. These equations characterize the rates of
change of observables (such as chemical species). There are
several different formalisms that may be used in creating rule-
based models [2], [5].

One popular rule-based modeling software is BioNetGen
[5], which uses graph rewriting. The biomolecules are rep-
resented by graphs, vertices represent molecular components,
and edges represent bonds between these components [2], [5].
Biomolecular complexes are represented by connected sets of
graphs. Rules are applied to these graphs and sets of graphs,
and the graphs are changed according to the results of the
biomolecular interactions specified by these rules [2], [5]. One
disadvantage of the traditional rule-based model is that it does
not capture details of molecular geometry. The traditional rule-
based model is based on a set of binding rules that only
include the number of binding sites on a molecule and do
not incorporate geometric information [6], [7]. This limitation
of the rule-based modeling approach results in models that are
unable to capture the effects of molecular geometry. In this
work, we propose a method to implicitly represent molecular
geometry by using simple measurements between regions on
the molecule to encode steric effects into the rules themselves.

In order to obtain aggregate size distribution data on which
to base our rule-based models, we employ a three-dimensional
rigid-body graph-based Monte Carlo method inspired by
robotic motions, which has previously been developed [8].
This method can explicitly represent molecular geometry
and molecular motions. A graph-based structure defines the
molecular interactions; ligands and receptors are represented
by vertices, and bonds between ligands and receptors are
represented by edges. This structure allows for the easy main-
tenance of aggregation information throughout the simulation,
and for the analysis of aggregate structure [8]. Instead of all-
atom molecular structures, 3D isosurface representations of
the molecules are used, which reduces the simulation to a
rigid-body problem and reduces the computational cost [8].
This method can be combined with rule-based modeling in
order to quantify the steric effects between allergen binding
regions that affect binding site accessibility and to represent
the differences in these steric effects caused by variations in
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molecular curvature.
In this work, we look at the process of antigen-antibody

aggregation; in particular, we study the binding of IgE-
FcεRI antibody-receptor complexes to the antigen Pen a 1.
Studying antigen-antibody aggregation and the structure of
the aggregates that form during this process is important
for understanding how the allergic response is initiated. The
allergic response in humans is set into motion by a tyrosine
kinase cascade that results from the crosslinking of IgE-FcεRI
receptor complexes via the binding of the IgE antibodies to an
antigen [9]. An antigen is a substance that is capable of induc-
ing the production of antibodies and binding to them; it may
have multiple possible conformations with differing geometric
characteristics, which can affect the size and structure of the
aggregates that form. The fold of an allergen is known to play a
role in the IgE reactivity of its epitopes [10]. The development
of a practical method for aggregate structure prediction based
on the geometry of a particular antigen conformation could
be useful not only for understanding aggregation, but also
for possible manipulation of the antigen geometry to obtain a
desired aggregate structure. Various properties of allergens and
protein complexes, such as structural stability, flexibility, and
dimerization, have been studied using molecular dynamics-
based methods [11], [12]; however, such methods would not be
useful to study antibody aggregation due to the long timescales
involved (on the order of seconds) and the large size and
quantity of the aggregates that may form.

In this paper, we introduce a novel rule-based method for
modeling molecular geometry, and we apply our method to
the modeling of antigen-antibody aggregation. This method
involves the construction of a rule set that encodes the steric ef-
fects between neighboring binding regions of the antigen. First,
we demonstrate our method using three U-shaped molecules
with large variations in curvature. Then, we use this method to
model the aggregation of IgE-FcεRI receptor complexes with
the shrimp allergen Pen a 1 for three different conformations of
the Pen a 1 molecule that have small variations in curvature:
native, S-shaped, and U-shaped. We compare the results of
this method to the results of the aforementioned Monte Carlo
simulations, and we analyze the differences in results between
the three Pen a 1 conformations studied.

II. RELATED WORK
Our work builds off of computational methods for model-

ing molecular geometry in biochemical processes, as well as
experimental methods to study IgE antibody binding behavior.

A. Rule-Based Modeling
Biological signaling systems are often comprised of macro-

molecules that can exist in a large number of functionally dis-
tinct states. This number scales exponentially with the amount
of modification possibilities [7]. One problem that arises when
modeling these systems is the specification problem, i.e. how
to specify such a large system.

One solution is implicit specification, which involves the
coarse-graining of sets of reactions and parameters into rules;
the only explicitly specified features in a reaction rule are
those which affect the reaction. Rules define the conditions for
molecular transformations and interactions, and are associated
with rate laws [2]. Some rules define multiple reactions, which
means that all of these reactions are associated with the same
rate law. The rules can usually be specified independently.
Rule-based specification methods include Kappa-calculus [13],

BioNetGen [5], ANC [14], and ML-Rules [15]. The Simmune
project and the SSC allow the specification of molecules within
spatial regions of arbitrary geometries [16].

The rule-based methods can be population-based, particle-
based, or hybrid. Population-based methods include ODE/PDE
numerical integration and the stochastic Gillespie algorithm.
In these methods, the application of a rule changes the size of
one of the populations, each of which consists of all molecules
that share the same state and same species. The system state
space can be very large, so methods to reduce it have been
introduced [7].

Particle-based rule evaluation involves tracking individual
particles (molecules and molecular complexes) through the
simulation [2]. This is a network-free method; at any time
point, only the existing particles, their states, and the possi-
ble reactions for the existing particles are necessary. Spatial
particle-based methods include an explicit specification of
space, and include SRSim [17] and MCell [18].

Our method differs from traditional approaches to rule-
based modeling in that the rules used in our method are
constrained by molecular geometry.

B. Geometric Molecular Modeling
The spatial simulation software SRSim [17] is a rule-

based modeling method that allows for the specification of
molecule geometry. SRSim integrates rule-based modeling,
molecular dynamics, and a stochastic, diffusing-particle sim-
ulator. Molecular geometry is provided by the user via data
files. Our proposed method is different in that it is a purely
rule-based ODE model that does not require any additional
data files to run, as the molecular geometry is encoded into
the rules themselves. In addition, our method only requires the
BioNetGen software to run.

The stochastic, particle-based Meredys software [19] uses
Brownian dynamics to simulate reaction-diffusion systems at
the mesoscopic level. It requires the specification of details
such as molecule positions, molecular geometry, reaction
site positions, and reaction types. Our rule-based method is
population-based and only requires the distances between pairs
of binding regions on a single antigen molecule to create the
model.

Computational methods for modeling two-molecule ligand-
receptor docking simulate systems on a smaller scale than
those studied using our method. Our method uses more realis-
tic geometric molecular models than do existing methods for
self-assembly of molecular structures, such as those employing
simple bead models [20].

C. Experimental Methods
Nanoprobe labeling and transmission electron microscopy

(TEM) of cell membranes are used to study cell signaling.
Methods for the spatial analysis of these nanoprobes, includ-
ing statistical analysis of clustering, were developed in [21].
Quantum dot (QD)-IgE probes that bind FcεRI have been used
to study the mobility of receptors by single-particle tracking
[22]. The kinetics of DNP-BSA binding to IgE has been
studied by observing fluorescence quenching [23], and the
data was analyzed using a mathematical model in which the
IgE binding sites are transiently exposed, allowing binding and
cross-linking to occur.
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III. METHODS
In this section, we present a rule-based model of the shrimp

allergen Pen a 1 that encodes the steric hindrances between
the IgE binding regions of the allergen within the set of
rules. We first briefly discuss the binding sites and binding
regions of the Pen a 1 molecule (Section III-A). Next, we
outline the assumptions that were made in the development
of this rule-based model (Section III-B). We then describe
our methods for determining the steric hindrances between
the binding regions (Section III-C), constructing a set of rules
based on these steric effects (Section III-C), optimizing the
rate constants (Section III-D), and implementing the rule-based
simulation (Section III-E). We explain how the probabilities
of formation of various aggregate sizes were calculated (Sec-
tion III-F). Lastly, we describe the Monte Carlo rigid-body
model (Section III-H) and how we compared the results of
our rule-based model to that of the Monte Carlo simulation
(Section III-I).

A. Pen a 1 Structure and Valency
The Pen a 1 allergen possesses a double-stranded coiled

structure. All-atom structures of shrimp tropomyosin were
obtained from the Protein Data Bank (PDB:1CG1) and the
Structural Database of Allergenic Proteins (SDAP Model
#284) [24], [25]. The Pen a 1 model used contains 568 amino
acids and 4,577 atoms. Experimental studies have predicted
that Pen a 1 possesses 16-18 binding sites, which can be
grouped into five general binding regions per strand [24], [26],
[27]. The amino acid sequences of the binding sites are listed in
[24]. The all-atom structure of the IgE-FcεRI receptor complex
was obtained from [28]. It contains 1,709 amino acids and
13,477 atoms.

We split the longest region into two binding regions (E and
F) in our rule-based model such that Pen a 1 has six binding
regions per strand, with 12 total regions in our model (see
Figure 1). This is because the longest region is significantly
larger than the other regions, and an analysis of the conditional
probabilities of binding of the binding sites in these two
regions shows that there is a significant probability that a site
in one of these regions can be bound while a site in the other
region is also bound in the 3D Monte Carlo simulation. Our
preliminary analysis showed that IgE can bind to the same
binding region on opposite strands simultaneously.

B. Rule-Based Model Assumptions
In order to simplify our rule-based model and to ensure that

the number of rules in the rule set does not become too large
for implementation, we make several practical assumptions
when constructing our rule sets. Firstly, we assume that an
IgE can only bind to a single binding region on the Pen a 1
molecule, and that an IgE cannot be bound to multiple regions
simultaneously. For simplicity, and since the Monte Carlo
data does not incorporate cross-linking, our rules forbid cross-
linking Pen a 1 molecules through IgE binding. As discussed
in Section III-A, we simplify our model further by assuming
that there are only 12 total binding regions on the Pen a 1
molecule (six per strand) rather than 16-18, and that each
IgE can only bind to one of these 12 regions. We make this
assumption based on the fact that the individual binding sites
within a binding region are very close to each other (< 5 nm)
such that an IgE bound to one of these sites is highly likely
to block the accessibility to the other sites within the same
region. Finally, we assume that each of the two strands in the

Fig. 1. The all-atom native molecular structure of the shrimp tropomyosin
Pen a 1 (tan), with the IgE binding regions circled. The IgE binding regions
(various colors) are located in five regions per strand, although for our rule-
based model, we have split the longer rightmost region into two separate
regions so that there are six binding regions per strand. In this paper, we label
the regions (from left to right) as regions A, B, C, D, E, and F.

Fig. 2. All-atom structures of three Pen a 1 conformations, with circles
representing a possible region of steric hindrance around the yellow/orange
binding region where the radius of each circle represents the cutoff distance
dc.

Pen a 1 molecule binds independently of the other strand. An
IgE bound to a region on one strand does not, in any way,
affect the probability of an IgE receptor binding to a region
on the opposite strand.

C. Determining Steric Effects and Rules for Various Confor-
mations of Pen a 1

The cutoff distance dc is an important parameter in this
study. In this paper, we use the term “cutoff distance” to
specify the maximum distance separating two binding regions
on a strand of Pen a 1 at which the two regions have steric
effects on each other (Figure 2), meaning that if one of these
regions is bound to a receptor, then the probability that the
other region can be bound to a receptor is reduced. The cutoff
distance determines the rule set of the rule-based model. For
each conformation, the cutoff distance is varied and tested to
find its optimal value, which is the value that results in a rule-
based model that most accurately represents the aggregate size
probability data obtained from the Monte Carlo simulation.

The Pen a 1 molecule is flexible and has various possible
conformations due to local energy minima. In our model, IgE-
FcεRI receptor complexes are bound to a two-dimensional cell
membrane, and the Pen a 1 molecule is constrained to move on
a 2D surface. Each Pen a 1 conformation possesses different
curvature properties. In this study, we focus on the native
[29], S-shaped, and U-shaped conformations (Figure 2). The
conformations for our study were designed using standalone
Foldit [30] and were energy-minimized using MOIL software
[31]. The molecular curvature around a binding region, along
with the IgE receptors bound to neighboring binding regions,
may cause steric hindrance around the binding region, i.e., IgE
receptors may be prevented from binding to the region due to
the region being blocked by receptor bound to neighboring re-
gions. A neighboring region is any region that is close enough
to the region under consideration to potentially block it if
bound to a receptor. There are three general categories of steric
effects that we consider in our model, which are illustrated
in Figure 3. Firstly, if all neighboring regions are unbound,
there is no steric hindrance imposed on a binding region.
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Fig. 3. Types of curvature on the Pen a 1 molecule, visualized split into two
strands. The accessibility to the middle (green) region may be affected when
neighboring regions are occupied. (a) Positive curvature, and (b) Negative
curvature.

Secondly, if the molecular curvature around a binding region is
positive (Figure 3 (a)), receptors bound to neighboring regions
are unlikely to affect the accessibility to this region since
positive curvature around two regions pulls them farther apart
(the linear distance between the regions increases). Lastly, if
the molecular curvature around a binding region is negative
(Figure 3 (b)), receptors bound to neighboring regions may
reduce the accessibility to this region since negative curvature
around two regions brings them closer together (the linear
distance between the regions decreases).

The distances between each pair of binding regions on each
strand of the Pen a 1 molecule were measured for each Pen a 1
conformation studied. For region pairs located in an area of
negative curvature, the linear distance between the regions was
measured. Otherwise, the distance of a free-form path along the
molecule between the two regions was used. This difference
in distance measurement accounts for the variation in steric
effects that results from different types of curvature. If the
distance between a pair of regions is less than the specified
cutoff distance, then those two regions are considered to exert
steric effects on each other, and the steric hindrance is encoded
into the binding rules for those regions.

For this study, the first rule construction method we tested
used a simple set of rules in which every rule has the same
rate constant kf1, and no binding is allowed onto a region that
has any steric effects exerted on it by any other region. The
second method builds on the first method by allowing binding
onto these regions with a reduced, but non-zero, probability
set by a separate forward rate constant kf2 assigned to rules
that specify a steric hindrance between regions.

Given that r is the distance between two binding regions
and dc is the cutoff distance, if one of these two binding
regions is occupied and the other region is free, the binding
rate constant kf for a receptor binding to the free region is
assigned according to the following:

If r>dc, then kf=kf1=1.0 /mol/s

If r≤dc, then kf=kf2<kf1

(1)

The rate constant kf2 was determined by performing an
optimization and fitting the resulting aggregate size data to
that of the 3D Monte Carlo model.

D. Rate Constant Optimization
Because the cutoff distance is unknown, this parameter was

varied from 3.0 nm to 20.0 nm in 0.1 nm increments, with
the rule set being reconstructed for each cutoff distance. An
optimization of kf2 was performed for every cutoff distance.

The forward rate constant kf2 for each Pen a 1 con-
formation was optimized using an adaptive algorithm based

on the Metropolis-Hastings algorithm. This algorithm finds a
minimum of the residual sum-of-squares (RSS) between the
RBM data and the Monte Carlo data (see Section III-I). If the
RSS value for a new rate constant kf2n is RSSn, the current
RSS value is RSSc, and the current rate constant is kf2, then
the rate constant is determined according to the following:

If RSSn>RSSc, then RSSc=RSSn and kf2=kf2n with probability e−∆RSS/T

If RSSn>RSSc, then RSSc=RSSc and kf2=kf2 with probability 1−e−∆RSS/T

If RSSn≤RSSc, then RSSc=RSSn and kf2=kf2n with probability 1
(2)

If RSSn is higher than RSSc, then RSSn (and kf2n ) are
accepted with a probability dependent on the difference be-
tween the two RSS values ∆RSS and the simulated annealing
temperature T . If the new value is accepted, then the rate
constant is incremented according to the specified step size,
and the new rate constant is tested. Adaptive rate constant step
sizes of 0.0001 /mol/s and 0.00001 /mol/s were used (if the
RSS is decreasing, the smaller step size is used to find and test
a new rate constant; otherwise, the larger step size is used).
However, if the new value is rejected, then the algorithm will
choose a new rate constant at random from over the entire
allowed range. The algorithm was allowed to search over the
range 0.00 to 0.40 /mol/s. We can expect from previous scans
of kf2 that the RSS value for any value of kf2 greater than
0.40 /mol/s will be too high to be acceptable.

E. Rule-Based Model Implementation
The rule-based model is specified using the BioNetGen

language [5] and implemented with the RuleBender program
[32]. RuleBender generates the ordinary differential equations
(ODEs) associated with the binding rules and tracks the
aggregates that are formed as the IgE receptors bind to the
Pen a 1 molecules in an ODE simulation. Each strand of the
two-stranded molecules is simulated separately. Each run takes
no more than 10 seconds to reach the steady state.

Another version of the rule set with forward binding rate
constants proportional to the number of binding sites in the
region was also tested, but did not yield aggregate size data
that fit better to the Monte Carlo data than the rule sets used.

F. Aggregate Size Probability Calculation
Our model assumes that Pen a 1 is comprised of two

strands, which we refer to here as strand I and strand II .
Therefore, the probability of formation of an aggregate of
a certain size is calculated by combining the independent
probabilities of formation of each strand (Figure 4). The
probability P (n) to form an aggregate of size n is given by:

P (n≤6)=
∑n

m=0
PI(m)PII(n−m)

P (n>6)=
∑6

m=n−6
PI(m)PII(n−m)

(3)

where PI(II)(n) is the independent probability of forming an
aggregate of size n in strand I(II).

G. Variation of Rule Set with Curvature
In order to more clearly illustrate how the set of binding

rules for a given molecule is affected by molecular curvature
using our method of rule construction, we present an example
of a U-shaped Pen a 1 molecule with varying curvature.
We look at three molecules: the U-shaped molecule seen in
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Fig. 4. The all-atom native molecular structure of the shrimp tropomyosin
Pen a 1 (left), visualized split into two strands: strand I and strand II (right).
The probability of formation of an aggregate of a certain size is calculated by
combining the independent probabilities for each strand.

Fig. 5. Visualizations of the (a) U-shaped, (b) 45-degree-rotated, and (c)
60-degree-rotated molecular structures. (It should be noted that the latter two
molecules are not energy-minimized conformations and are only presented
here for the purpose of demonstrating our rule construction method.)

Figure 2, the same molecule with its two ends rotated inward
by 45 degrees, and the same molecule with its two ends
rotated inward by 60 degrees (see Figure 5). (It should be
noted that the latter two molecules are not energy-minimized
conformations and are only presented here for the purpose of
demonstrating our rule construction method. The latter two
molecules are unlikely to be energetically feasible due to their
high degree of curvature.) The rule sets for strand I are shown
for the U-shaped Pen a 1 molecule (Table III), the 45-degree-
rotated molecular structure (Table I), and the 60-degree-rotated
molecular structure (Table II).

TABLE I. RULE SET FOR STRAND I (TI ) OF THE 45-DEGREE-ROTATED
MOLECULAR STRUCTURE. LETTERS IN PARENTHESES ARE BINDING SITES.
OMITTED LETTERS ARE FREE OR OCCUPIED. THE IGE SUBSCRIPT SHOWS

WHICH SITE IT IS BOUND TO.

Binding Reaction Binding
Site Rule Rate
A TI (A,B,C) + IgE → TI (IgEA,B,C) kf1

TI (A,IgEB ,C) + IgE → TI (IgEA,IgEB ,C) kf2
TI (A,B,IgEC ) + IgE → TI (IgEA,B,IgEC ) kf2
TI (A,IgEB ,IgEC ) + IgE → TI (IgEA,IgEB ,IgEC ) kf2

B TI (A,B,C) + IgE → TI (A,IgEB ,C) kf1
TI (IgEA,B,C) + IgE → TI (IgEA,IgEB ,C) kf2
TI (A,B,IgEC ) + IgE → TI (A,IgEB ,IgEC ) kf2
TI (IgEA,B,IgEC ) + IgE → TI (IgEA,IgEB ,IgEC ) kf2

C TI (A,B,C,D) + IgE → TI (A,B,IgEC ,D) kf1
TI (IgEA,B,C,D) + IgE → TI (IgEA,B,IgEC ,D) kf2
TI (A,IgEB ,C,D) + IgE → TI (A,IgEB ,IgEC ,D) kf2
TI (A,B,C,IgED) + IgE → TI (A,B,IgEC ,IgED) kf2
TI (IgEA,IgEB ,C,D) + IgE → TI (IgEA,IgEB ,IgEC ,D) kf2
TI (IgEA,B,C,IgED) + IgE → TI (IgEA,B,IgEC ,IgED) kf2
TI (A,IgEB ,C,IgED) + IgE → TI (A,IgEB ,IgEC ,IgED) kf2
TI (IgEA,IgEB ,C,IgED) + IgE → TI (IgEA,IgEB ,IgEC ,IgED) kf2

D TI (C,D,E) + IgE → TI (C,IgED ,E) kf1
TI (IgEC ,D,E) + IgE → TI (IgEC ,IgED ,E) kf2
TI (C,D,IgEE ) + IgE → TI (C,IgED ,IgEE ) kf2
TI (IgEC ,D,IgEE ) + IgE → TI (IgEC ,IgED ,IgEE ) kf2

E TI (D,E,F) + IgE → TI (D,IgEE ,F) kf1
TI (IgED ,E,F) + IgE → TI (IgED ,IgEE ,F) kf2
TI (D,E,IgEF ) + IgE → TI (D,IgEE ,IgEF ) kf2
TI (IgED ,E,IgEF ) + IgE → TI (IgED ,IgEE ,IgEF ) kf2

F TI (E,F) + IgE → TI (E,IgEF ) kf1
TI (IgEE ,F) + IgE → TI (IgEE ,IgEF ) kf2

For each of these three molecules, the distances between
each pair of binding regions were measured, and the rule sets
for each molecule were constructed according to these dis-
tances. For the purpose of comparing how molecular curvature

TABLE II. RULE SET FOR STRAND I (TI ) OF THE
60-DEGREE-ROTATED MOLECULAR STRUCTURE. LETTERS IN

PARENTHESES ARE BINDING SITES. OMITTED LETTERS ARE FREE OR
OCCUPIED. THE IGE SUBSCRIPT SHOWS WHICH SITE IT IS BOUND TO.

Binding Reaction Binding
Site Rule Rate
A TI (A,B,C,D) + IgE → TI (IgEA,B,C,D) kf1

TI (A,IgEB ,C,D) + IgE → TI (IgEA,IgEB ,C,D) kf2
TI (A,B,IgEC ,D) + IgE → TI (IgEA,B,IgEC ,D) kf2
TI (A,B,C,IgED) + IgE → TI (IgEA,B,C,IgED) kf2
TI (A,IgEB ,IgEC ,D) + IgE → TI (IgEA,IgEB ,IgEC ,D) kf2
TI (A,IgEB ,C,IgED) + IgE → TI (IgEA,IgEB ,C,IgED) kf2
TI (A,B,IgEC ,IgED) + IgE → TI (IgEA,B,IgEC ,IgED) kf2
TI (A,IgEB ,IgEC ,IgED) + IgE → TI (IgEA,IgEB ,IgEC ,IgED) kf2

B TI (A,B,C) + IgE → TI (A,IgEB ,C) kf1
TI (IgEA,B,C) + IgE → TI (IgEA,IgEB ,C) kf2
TI (A,B,IgEC ) + IgE → TI (A,IgEB ,IgEC ) kf2
TI (IgEA,B,IgEC ) + IgE → TI (IgEA,IgEB ,IgEC ) kf2

C TI (A,B,C,D) + IgE → TI (A,B,IgEC ,D) kf1
TI (IgEA,B,C,D) + IgE → TI (IgEA,B,IgEC ,D) kf2
TI (A,IgEB ,C,D) + IgE → TI (A,IgEB ,IgEC ,D) kf2
TI (A,B,C,IgED) + IgE → TI (A,B,IgEC ,IgED) kf2
TI (IgEA,IgEB ,C,D) + IgE → TI (IgEA,IgEB ,IgEC ,D) kf2
TI (IgEA,B,C,IgED) + IgE → TI (IgEA,B,IgEC ,IgED) kf2
TI (A,IgEB ,C,IgED) + IgE → TI (A,IgEB ,IgEC ,IgED) kf2
TI (IgEA,IgEB ,C,IgED) + IgE → TI (IgEA,IgEB ,IgEC ,IgED) kf2

D TI (A,B,C,D,E) + IgE → TI (A,B,C,IgED ,E) kf1
TI (IgEA,B,C,D,E) + IgE → TI (IgEA,B,C,IgED ,E) kf2
TI (A,IgEB ,C,D,E) + IgE → TI (A,IgEB ,C,IgED ,E) kf2
TI (A,B,IgEC ,D,E) + IgE → TI (A,B,IgEC ,IgED ,E) kf2
TI (A,B,C,D,IgEE ) + IgE → TI (A,B,C,IgED ,IgEE ) kf2
TI (IgEA,IgEB ,C,D,E) + IgE → TI (IgEA,IgEB ,C,IgED ,E) kf2
TI (IgEA,B,IgEC ,D,E) + IgE → TI (IgEA,B,IgEC ,IgED ,E) kf2
TI (IgEA,B,C,D,IgEE ) + IgE → TI (IgEA,B,C,IgED ,IgEE ) kf2
TI (A,IgEB ,IgEC ,D,E) + IgE → TI (A,IgEB ,IgEC ,IgED ,E) kf2
TI (A,IgEB ,C,D,IgEE ) + IgE → TI (A,IgEB ,C,IgED ,IgEE ) kf2
TI (A,B,IgEC ,D,IgEE ) + IgE → TI (A,B,IgEC ,IgED ,IgEE ) kf2
TI (IgEA,IgEB ,IgEC ,D,E) + IgE → TI (IgEA,IgEB ,IgEC ,IgED ,E) kf2
TI (IgEA,IgEB ,C,D,IgEE ) + IgE → TI (IgEA,IgEB ,C,IgED ,IgEE ) kf2
TI (IgEA,B,IgEC ,D,IgEE ) + IgE → TI (IgEA,B,IgEC ,IgED ,IgEE ) kf2
TI (A,IgEB ,IgEC ,D,IgEE ) + IgE → TI (A,IgEB ,IgEC ,IgED ,IgEE ) kf2
TI (IgEA,IgEB ,IgEC ,D,IgEE ) + IgE → TI (IgEA,IgEB ,IgEC ,IgED ,IgEE ) kf2

E TI (D,E,F) + IgE → TI (D,IgEE ,F) kf1
TI (IgED ,E,F) + IgE → TI (IgED ,IgEE ,F) kf2
TI (D,E,IgEF ) + IgE → TI (D,IgEE ,IgEF ) kf2
TI (IgED ,E,IgEF ) + IgE → TI (IgED ,IgEE ,IgEF ) kf2

F TI (E,F) + IgE → TI (E,IgEF ) kf1
TI (IgEE ,F) + IgE → TI (IgEE ,IgEF ) kf2

Fig. 6. Comparison of rule-based model aggregate size distributions for the
U-shaped, 45-degree-rotated, and 60-degree-rotated molecular structures.

affects the rule set, the cutoff distance was fixed at 8.1 nm, and
the forward rate constant kf2 was fixed at 0.005 mol−1s−1.
The rule-based model for each molecule was simulated and
the antibody aggregate size probabilities were calculated (see
Figure 6). We observe that as the degree of curvature of
the molecule increases, the aggregate size distribution shifts
towards smaller aggregate sizes, which corresponds to the
increase in steric effects between binding regions encoded in
the rule sets.

H. Monte Carlo Geometric Simulation
We compared the aggregate size distributions from our

rule-based model to those of a previously developed Monte
Carlo model [8] that uses 3-D rigid body models of the
antigens and receptors. Initially, the molecules are randomly
positioned within the bounding volume with no bonds present.
Then, during the simulation, at every time step, the positions
of the molecules change according to a combination of random
sampling and biological constraints such as molecular speeds,
binding rates, and unbinding rates (Figure 7). Also, at every
time step, any two binding sites (on two separate molecules)
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Fig. 7. A visualization of the results of a 3D Monte Carlo simulation of one
Pen a 1 molecule (tan) among multiple receptor complexes (blue).

within binding distance of each other will bind with a prob-
ability determined by the binding rate. The stability of the
number of edges in the graph-based structure can be used to
determine when to stop the simulation. Since the simulation
models activity taking place on the surface of a cell membrane,
the molecules can translate on the XY plane and rotate about
the Z axis.

It should be noted that experimental data pertaining to the
aggregation of IgE-FcεRI receptor complexes onto the Pen a 1
molecule is not readily available as of the date this work
was written. Therefore, we cannot compare the computational
results of this work to experiment. In addition, the 3D Monte
Carlo simulation does not include energetics, which limits our
understanding of receptor binding onto the binding sites of the
Pen a 1 molecule, and is the reason why we cannot derive the
forward rate constants directly from the simulation.

The 3D molecular models of the Monte Carlo simulation
were created by creating isosurface models of the all-atom
molecular structures using UCSF Chimera [33].

I. Comparison Analysis
In order to quantify the difference between the Monte

Carlo and rule-based modeling aggregate sizes for each con-
formation, the residual sum-of-squares (RSS) normalized by
the number of possible aggregate sizes (13) was calculated
for each conformation. The equation used to calculate the
normalized RSS is:

RSS=

∑N

i=1
(Pi

MC
−Pi

RBM
)2

N (4)

where N is the total number of possible aggregate sizes in a
histogram (each histogram has the same number of possible
aggregate sizes), P i

MC is the occurrence probability of the ith
aggregate size of the Monte Carlo data, and P i

RBM is the
occurrence probability of the ith aggregate size of the rule-
based modeling data.

Since the data points used in this calculation are prob-
abilities, the maximum possible normalized RSS is 1, and
the minimum possible normalized RSS (corresponding to two
identical histograms) is zero.

IV. RESULTS
A. Experimental Setup

1) Monte Carlo Simulation: The environment of the Monte
Carlo simulations was a 200 nm x 200 nm (40,000 nm2)
discrete membrane with non-periodic boundaries. For each
run, one Pen a 1 molecule and 24 IgE-FcεRI receptor com-
plexes were simulated, such that the receptor density was
∼600 receptors/µm2. Sixty runs were performed for each
Pen a 1 conformation. Association and dissociation rates of

1.0 mol−1s−1 and 0.01 s−1, from [23] were used for the
Pen a 1 antigen. The diffusion coefficient 0.09µm2/s of IgE-
FcεRI found in [22] was used for all molecules. A time step
of 10 µs was used, and every experiment was run for 500,000
time steps, which is long enough for the simulations to reach
a steady state. The simulations are rather costly, with one run
finishing in approximately 20 hours at full model resolution.

The reduction in speed of aggregates as they increase in
size [22], which has not been fully quantified, is included
in the simulation by reducing the diffusion coefficient of an
aggregate such that it is inversely proportional to the size
of the aggregate. For example, the diffusion coefficient of
an aggregate containing five receptors would be 1/5 of the
original diffusion coefficient. The method of speed reduction
implemented only affects aggregation kinetics and does not
have a significant effect on the packing structure of aggregates
at equilibrium.

The Monte Carlo simulation code was developed using
the Parasol Motion Planning Library (PMPL). The simulations
were run on a supercomputer housed at the University of New
Mexico, utilizing single cores of Intel Xeon E5645 processors
with 4 GB of RAM per processor.

2) Rule-Based Modeling: The rule-based model was spec-
ified in the BioNetGen language, and ODE simulations were
conducted on these models using RuleBender [32]. In each
experiment, 100 Pen a 1 antigen molecules and 1000 receptors
were simulated. Because each of the two strands was simu-
lated individually, the total population included 100 strand I
molecules, 100 strand II molecules, and 1000 receptors. Each
experiment was run for 1000 time steps, long enough for
the simulation to reach a steady state, using a time step of
0.01 s. The simulations were run on the system described in
Section IV-A1.

B. Rule Sets
The optimized cutoff distance corresponds to an optimal

set of binding rules for each conformation of Pen a 1.
The optimal rule sets were found to be the same for all

three conformations, although the optimized rate constant kf2
varies based on conformation. These rule sets are shown for
strand I (Table III) and strand II (Table IV) of the Pen a 1
molecule.

TABLE III. RULE SET FOR STRAND I (TI ) OF PEN A 1. LETTERS IN
PARENTHESES ARE BINDING SITES. OMITTED LETTERS ARE FREE OR
OCCUPIED. THE IGE SUBSCRIPT SHOWS WHICH SITE IT IS BOUND TO.

Binding Reaction Binding
Site Rule Rate
A TI (A,B) + IgE → TI (IgEA,B) kf1

TI (A,IgEB) + IgE → TI (IgEA,IgEB) kf2
B TI (A,B,C) + IgE → TI (A,IgEB ,C) kf1

TI (IgEA,B,C) + IgE → TI (IgEA,IgEB ,C) kf2
TI (A,B,IgEC ) + IgE → TI (A,IgEB ,IgEC ) kf2
TI (IgEA,B,IgEC ) + IgE → TI (IgEA,IgEB ,IgEC ) kf2

C TI (B,C,D) + IgE → TI (B,IgEC ,D) kf1
TI (IgEB ,C,D) + IgE → TI (IgEB ,IgEC ,D) kf2
TI (B,C,IgED) + IgE → TI (B,IgEC ,IgED) kf2
TI (IgEB ,C,IgED) + IgE → TI (IgEB ,IgEC ,IgED) kf2

D TI (C,D,E) + IgE → TI (C,IgED ,E) kf1
TI (IgEC ,D,E) + IgE → TI (IgEC ,IgED ,E) kf2
TI (C,D,IgEE ) + IgE → TI (C,IgED ,IgEE ) kf2
TI (IgEC ,D,IgEE ) + IgE → TI (IgEC ,IgED ,IgEE ) kf2

E TI (D,E,F) + IgE → TI (D,IgEE ,F) kf1
TI (IgED ,E,F) + IgE → TI (IgED ,IgEE ,F) kf2
TI (D,E,IgEF ) + IgE → TI (D,IgEE ,IgEF ) kf2
TI (IgED ,E,IgEF ) + IgE → TI (IgED ,IgEE ,IgEF ) kf2

F TI (E,F) + IgE → TI (E,IgEF ) kf1
TI (IgEE ,F) + IgE → TI (IgEE ,IgEF ) kf2
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TABLE IV. RULE SET FOR STRAND II (TII ) OF PEN A 1. LETTERS IN
PARENTHESES ARE BINDING SITES. OMITTED LETTERS ARE FREE OR
OCCUPIED. THE IGE SUBSCRIPT SHOWS WHICH SITE IT IS BOUND TO.

Binding Reaction Binding
Site Rule Rate
A TII (A,B) + IgE → TII (IgEA,B) kf1

TII (A,IgEB) + IgE → TII (IgEA,IgEB) kf2
B TII (A,B,C) + IgE → TII (A,IgEB ,C) kf1

TII (IgEA,B,C) + IgE → TII (IgEA,IgEB ,C) kf2
TII (A,B,IgEC ) + IgE → TII (A,IgEB ,IgEC ) kf2
TII (IgEA,B,IgEC ) + IgE → TII (IgEA,IgEB ,IgEC ) kf2

C TII (B,C,D) + IgE → TII (B,IgEC ,D) kf1
TII (IgEB ,C,D) + IgE → TII (IgEB ,IgEC ,D) kf2
TII (B,C,IgED) + IgE → TII (B,IgEC ,IgED) kf2
TII (IgEB ,C,IgED) + IgE → TII (IgEB ,IgEC ,IgED) kf2

D TII (C,D,E) + IgE → TII (C,IgED ,E) kf1
TII (IgEC ,D,E) + IgE → TII (IgEC ,IgED ,E) kf2
TII (C,D,IgEE ) + IgE → TII (C,IgED ,IgEE ) kf2
TII (IgEC ,D,IgEE ) + IgE → TII (IgEC ,IgED ,IgEE ) kf2

E TII (D,E,F) + IgE → TII (D,IgEE ,F) kf1
TII (IgED ,E,F) + IgE → TII (IgED ,IgEE ,F) kf2
TII (D,E,IgEF ) + IgE → TII (D,IgEE ,IgEF ) kf2
TII (IgED ,E,IgEF ) + IgE → TII (IgED ,IgEE ,IgEF ) kf2

F TII (E,F) + IgE → TII (E,IgEF ) kf1
TII (IgEE ,F) + IgE → TII (IgEE ,IgEF ) kf2

TABLE V. RULE-BASED MODEL PARAMETERS FOR THREE PEN A 1
CONFORMATIONS

Parameter Native S-shaped U-shaped
Cutoff distance (nm) 7.0-8.7 6.8-8.3 6.8-8.6

kf1 (mol−1s−1) 1.00 1.00 1.00

kf2 (mol−1s−1) 0.006595 0.003558 0.007315

kr (mol−1s−1) 0.01 0.01 0.01

RSS 0.000703 0.000135 0.000469

C. Aggregate Size Histograms
The forward rate constant kf2 and the cutoff distance

range were optimized for each of the three energy-minimized
conformations of Pen a 1. Table V displays the rate constants,
cutoff distances, and RSS values for the native, S-shaped, and
U-shaped Pen a 1 conformations.

The Monte Carlo aggregate size probability histogram data
is shown along with the optimized rule-based modeling data
for the native, S-shaped, and U-shaped Pen a 1 conformations
(Figure 8). The error bars for the Monte Carlo data were
calculated by binning the 60 runs into 10 sets of six runs each
and then calculating the standard error of the mean.

1) Comparison of Conformations: For the 3D Monte Carlo
simulation, we observe that there is a significant difference
between the aggregate size distribution of the S-shaped con-
formation and that of the native and U-shaped conforma-
tions. The optimal forward binding rate constant kf2 shows
variation between conformations, particularly between the S-
shaped conformation and the other two. However, the optimal
set of binding rules was found to be identical for all three
conformations, and the optimal cutoff distance range is similar,
but not identical, for all three conformations. This indicates
that the distance at or below which two binding regions exert
significant steric effects on each other is not highly dependent
on conformation for the three energy-minimized conformations
studied.

The rate constant kf2 represents the probability of an
IgE-receptor complex binding to a region on the Pen a 1
molecule that is under significant steric hindrance from IgE-
receptor complexes that are bound to neighboring binding
regions. For the S-shaped molecule, the optimized kf2 value is
approximately half of the kf2 value for the other two molecular
geometries, indicating that the curvature of the S-shaped

Fig. 8. Comparison of Monte Carlo (blue) and rule-based model (red)
aggregate size distributions for the native (top), S-shaped (center), and U-
shaped (bottom) Pen a 1 conformations.

molecule may be reducing the probability that a binding region
can bind without being blocked by receptors bound to nearby
regions. This difference indicates that molecular geometry may
play an important role in antibody aggregation onto the Pen a 1
molecule and should be taken into consideration in future
aggregation research.

V. CONCLUSION
We developed a novel implementation of rule-based mod-

eling that encodes molecular geometry into the rules and
associated rate constants. We studied the effects of molecular
geometry on the rule sets of three U-shaped molecules of
varying curvature. We also studied three energy-minimized
molecular conformations of the Pen a 1 allergen using this
method combined with a 3D rigid-body Monte Carlo simula-
tion. We analyzed the similarities and differences among the
rule-based models for each geometry.

In our study of the U-shaped molecule, we found that
the degree of curvature of the antigen has a strong effect
on the rule set constructed using our proposed method, with
individual binding regions becoming dependent on a greater
number of neighboring binding regions as the degree of
curvature increases. In our study of the three energy-minimized
Pen a 1 conformations, we found that our proposed method
of rule set construction provides a quantification of the steric
effects that affect binding site accessibility and allows us
to observe which neighboring binding regions most strongly
affect a particular region. Although the set of binding rules will
not always be different for different antigen conformations,
the binding rate constants associated with the rules provide
another means of quantifying the variation in aggregate size
distribution based on antigen conformation. We used a rod-
shaped molecule in our study, but our method for measuring
distances between binding sites could be modified for use with
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other molecule geometries. Furthermore, our method could be
extended to model experimental data in the future; analysis of
probe positions in electron microscopy images allow for the
estimation of receptor clustering.
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